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Introduction

Welcome! This guide aims to give you an introduction to the mathematics behind
the numeric hierarchy of type classes in PureScript’s Prelude, and it’s aimed
at people who haven’t (necessarily) studied mathematics beyond a high-school
level.


Why?

Normally, algebraic structures like rings or fields are only introduced to
students at undergraduate level. One unfortunate side-effect of this is that
lots of the material currently available on the web which describes these
concepts is sometimes a little inaccessible for people who haven’t studied
mathematics past a high-school level. My aim with this guide is to help people
develop intuition for what these structures are and how they can be used, so
that that knowledge can be applied in PureScript code. I also hope that I can
help you see a glimpse of the beauty of mathematics and convince you that it is
worth studying in its own right.

I want to stress that it is not necessary to read and understand all of this
in order to be able to use the PureScript type classes like Ring or
Field, and to be able to write functions which work for any type which has
a Ring or Field instance. However, I do hope that it will help you
answer questions such as:


	“I want to write a function which works for many different numeric
types, but should I give it a Semiring constraint, or a Ring
constraint, or something else entirely?”


	“I have written a function with a Field constraint, and I want to find an
appropriate concrete type which is a Field to test it with. How do I do
that?”


	“What’s the point in all of this maths mumbo-jumbo anyway — what’s wrong with
plain old Haskell-style Num?”






Prerequisites

I will try to assume as little knowledge of mathematics as I can. If I
accidentally assume knowledge of something which makes you unable to understand
a part of this guide, please let me know by opening an issue on
GitHub [https://github.com/hdgarrood/purescript-numeric-hierarchy-guide] or
emailing me at harry@garrood.me.

Although this guide is primarily aimed at PureScript users, I will only
reference PureScript infrequently for the purpose of illustrating examples.
This guide is really about mathematics, not PureScript.

Therefore, as far as is reasonably possible, I am also interested in making
this guide accessible to programmers using other languages or libraries which
make use of these same abstractions (rings, fields, etc). If you fit into this
category, and you are unable to follow something I’ve written because it
requires more than a very basic level of PureScript knowledge, please feel free
to file an issue.



How to read this guide

I will provide exercises throughout. Whenever you encounter an exercise, I
strongly recommend you attempt it before reading on! I speak from experience as
a maths student: in my personal experience, it’s simply not possible to reach
the same level of understanding without having worked through problems myself.

I should note that I often find it extremely tempting to skip to the solution,
read through it, and tell myself “yes, I could have done that.” Be careful of
this! It’s very easy for me to persuade myself that I could have solved a
problem when in fact I probably wouldn’t have been able to. But also it’s okay
to look at the solution if you’re really stuck; attempting the problem first
is the most important thing.

If you get stuck on an exercise for more than, say, 10 minutes, it’s okay to
skip it or simply look at the solution (although if you find yourself needing
to skip lots of exercises, perhaps consider going back and rereading some
earlier bits). Another good idea if you get stuck is to do something else and
come back to the problem the following day — of course, if you’re a programmer,
you might already know this.

One more thing I will say is that you shouldn’t expect to be able to read this
sort of material anywhere nearly as quickly as you might read most other types
of non-fiction prose. Mathematical writing is usually extremely dense — I don’t
mean this as a criticism of the writing style of mathematicians, but rather to
help avoid unrealistic expectations. In fact I think this density is a mostly
unavoidable consequence of the nature of mathematics. Don’t be put off if it
takes you a long time to get through this!



License

[image: _images/88x31.png]
 [https://creativecommons.org/licenses/by-nc-sa/4.0/]This work is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International License [https://creativecommons.org/licenses/by-nc-sa/4.0/].

This means you are free to copy and redistribute it as well as make changes,
but you must give credit, link to the license, and indicate if changes were
made. The license also forbids commercial use.

Note that the work is not necessarily exclusively licensed under CC BY-NC-SA
4.0. In particular, if you’re worried about whether your use of it counts as a
commercial use please contact me and we’ll probably be able to sort something
out.





          

      

      

    

  

    
      
          
            
  
Logic

We will start with a short discussion of logic, in particular we will briefly
cover some notation and a few proof techniques. We will need these later on to
be able to make sense of statements concerning things like rings and fields,
and also to prove or disprove these statements.

You will probably be happy with the idea that statements such as “the sky is
blue” and “pigs can fly” can have truth-values (i.e. “true” or “false”). There
are also ways of combining statements to make new statements, which again you
are most likely familiar with already:


	If you have two statements \(P\) and \(Q\), you can make a new
statement “\(P \text{ and } Q\)”, which is true if both \(P\) and
\(Q\) are true. This is often written as \(P \land Q\).


	Similarly, you can also make a new statement “\(P \text{ or } Q\)”, which
is true if at least one of \(P\) and \(Q\) are true. This is often
written as \(P \lor Q\).




So for example, if we let the symbol \(P\) represent the statement “the sky
is blue”, and let the symbol \(Q\) represent the statement “pigs can fly”,
the statement \(P \lor Q\) is true, because at least one of them, in this
case \(P\), is true.

Exercise 1.1. Using the same assignment of the symbols \(P\) and
\(Q\), what is the truth-value of the statement \(P \land Q\)?


Truth tables

We can describe the behaviour of logical operators like \(\land\) and
\(\lor\) using things called truth tables. For example, here is the truth
table for logical and (\(\land\)):



	\(P\)

	\(Q\)

	\(P \land Q\)





	T

	T

	T



	T

	F

	F



	F

	T

	F



	F

	F

	F






The table lists the four possible combinations of truth-values of \(P\) and
\(Q\), as well as the truth-value of \(P \land Q\) in each case. If
this isn’t clear, it might help to compare it to an implementation of
\(\land\) in PureScript:

logicalAnd :: Boolean -> Boolean -> Boolean
logicalAnd true true = true
logicalAnd true false = false
logicalAnd false true = false
logicalAnd false false = false





Exercise 1.2. Write out the truth table for logical or, \(\lor\).



Logical equivalence

We say that two statements are logically equivalent if they always have the
same truth value as each other, that is, if they are always either both true or
both false. Here is a truth table for logical equivalence with some entries
missing:



	\(P\)

	\(Q\)

	\(P \Leftrightarrow Q\)





	T

	T

	T



	T

	F

	F



	F

	T

	?



	F

	F

	?






Exercise 1.3. Complete the missing entries of this truth table.

So for example, \(P \land P\) is always logically equivalent to \(P\),
regardless of the truth-value of \(P\). We can express this in symbols by
using a double-ended arrow like this: \(P \land P \Leftrightarrow P\).



Logical negation

Another thing we can do with statements is negate them: make a new statement
which is true if the original statement is false, and false if the original
statement is true. If \(P\) is a statement, then the logical negation of
\(P\) is written as \(\neg P\).

The following two equivalences hold regardless of the truth-values of \(P\)
and \(Q\):


\[ \begin{align}\begin{aligned}\neg (P \land Q) \; \Leftrightarrow \; \neg P \lor \neg Q\\\neg (P \lor Q) \; \Leftrightarrow \; \neg P \land \neg Q\end{aligned}\end{align} \]

These two equivalences are called De Morgan’s laws.

Exercise 1.4. Persuade yourself that De Morgan’s laws hold. One way to do
this is to write out a truth table.



Logical implication

We now consider statements of the form “if \(P\), then \(Q\)”, for
example:


	if it is raining, then we will get wet,


	if \(x\) is even, then it can be divided by \(2\) exactly,


	if \(y\) is even and \(z\) is even, then \(y + z\) is even.




We represent this kind of statement by defining a new logical operator called
logical implication, which we write as a rightwards-pointing arrow:
\(\text{it is raining} \Rightarrow \text{we will get wet}\).

The logical implication operator is defined as follows:



	\(P\)

	\(Q\)

	\(P \Rightarrow Q\)





	T

	T

	T



	T

	F

	F



	F

	T

	T



	F

	F

	T






That is, \(P \Rightarrow Q\) is a logical statement just like all of the
others we have seen, and it has a truth-value which depends on the truth-values
of \(P\) and \(Q\).

Exercise 1.5. Persuade yourself, by using a truth table (or any other
method that works for you), that \(P \Rightarrow Q\) is always logically
equivalent to \(\neg P \lor Q\) regardless of the truth-values of \(P\)
and \(Q\).

The standard way of proving a statement of the form \(P \Rightarrow Q\) is
to first assume that \(P\) is true, and then show that \(Q\) follows,
i.e. show that \(Q\) must also be true.

For example, suppose we wanted to prove the statement


\[x \text{ is even} \Rightarrow x^2 \text{ is even}.\]

We would start by letting \(x\) be some arbitrary integer and assuming that
it is even. Since \(x\) is even, we can write \(x = 2m\) for some
integer \(m\). Then, \(x^2 = 4m^2\) and therefore we have shown
\(x^2\) has \(4\) as a factor, so it must also have \(2\) as a
factor, which means it must be even.



Converses

If we have a statement which is a logical implication, for example \(x
\text{ is even} \Rightarrow x \text{ can be divided by 2 exactly}\), there is
another closely related statement called its converse. To find the converse
of an implication statement, we simply swap the two operands. For example, the
converse of the statement


\[x \text{ is even} \Rightarrow x \text{ can be divided by 2 exactly}\]

is this:


\[x \text{ can be divided by 2 exactly} \Rightarrow x \text{ is even}\]

Notice that both of the above statements are true. However, this is often not
the case! If a statement is true, it is not safe to assume that its converse is
also true. For example, consider the statement


\[y \text{ is even and } z \text{ is even} \Rightarrow y + z \text{ is even}\]

The converse of this statement is


\[y + z \text{ is even} \Rightarrow y \text{ is even and } z \text{ is even}\]

Notice that, while the first is true, the second is not. For instance, if
we take \(y = z = 1\), then \(y + z\) is even, but neither \(y\)
nor \(z\) is.



Contrapositives

If we have a statement which is a logical implication, for example
\(\text{my pet is a cat} \Rightarrow \text{my pet is a mammal}\), there is
another closely related statement called its contrapositive. To find the
contrapositive of a logical implication statement, we swap the operands and
negate them both. So, for example, the contrapositive of the statement
\(\text{my pet is a cat} \Rightarrow \text{my pet is a mammal}\) is the
statement \(\text{my pet is not a mammal} \Rightarrow \text{my pet is not
a cat}\).

The first thing to notice is that any implication statement is always logically
equivalent to its contrapositive.

Exercise 1.6. Check this! Persuade yourself that \(P \Rightarrow Q\) is
always logically equivalent to \(\neg Q \Rightarrow \neg P\), perhaps with
a truth table.

This exercise suggests another way of proving statements of the form \(P
\Rightarrow Q\), which is to instead assume that \(\neg Q\) is true, and
show that \(\neg P\) follows. This technique is called contraposition;
the new statement is called the contrapositive of the original one.

Exercise 1.7. Use contraposition to prove the statement


\[x^2 \text{ is odd} \Rightarrow x \text{ is odd}.\]

Another way of thinking of logical equivalence is in terms of logical
implication. Specifically, an alternative way of defining
\(\Leftrightarrow\) is by saying that \(P \Leftrightarrow Q\) is the
same as this bad boy:


\[(P \Rightarrow Q) \land (Q \Rightarrow P)\]

In fact, the standard way of proving a statement of the form \(P
\Leftrightarrow Q\) is to first prove \(P \Rightarrow Q\) and then to prove
\(Q \Rightarrow P\).



Sets

For our purposes, it will be sufficient to say a set is a collection of any
kind of mathematical object: sets may contain numbers, functions, sets of
numbers, and so on.

We can write a set by listing the elements in between curly braces, like this:


\[\{1, 2, 3\}\]

Note that sets have no concept of ordering, so the set \(\{1, 3, 2\}\) is
the same as the set \(\{1, 2, 3\}\).

The only thing we can really do with a set is to ask whether it contains some
particular thing. The notation for the statement “\(a\) exists within the
set \(A\)” looks like this:


\[a \in A.\]

We also have a notation for the negation of this statement, i.e. “\(a\)
does not exist within the set \(A\)”:


\[a \notin A.\]

Often (but not always), uppercase letters denote sets, and lowercase letters
denote elements of sets.

Here are a few sets you may have come across already:


	The set of natural numbers, \(\{0, 1, 2, 3, 4, ...\}\). That is, the
set of all the integers which are not negative. This set comes up fairly
often so we have a special notation for it: \(\mathbb{N}\). (Note:
depending on context, \(0\) is sometimes not considered to be an element
of \(\mathbb{N}\); in this guide we will say that it is.)


	The set of integers, \(\{0, 1, -1, 2, -2, 3, -3, ...\}\). Like
\(\mathbb{N}\) but it also includes negative numbers. We have a special
notation for this set too: \(\mathbb{Z}\), from the German Zahlen,
which just means “numbers”.


	The set of real numbers, which is the kind of number you’re probably most
used to. \(0, 1, 37, \frac{1}{2}\), and \(\pi\) are all examples of
real numbers. This set also has a special notation: \(\mathbb{R}\).




So for example, the following are all true:


\[ \begin{align}\begin{aligned}6 \in \mathbb{N}\\\frac{2}{3} \in \mathbb{R}\\
\frac{2}{3} \notin \mathbb{N}.\end{aligned}\end{align} \]



Quantifiers

Up to now, the symbols \(P\) and \(Q\) have always represented
statements. However we can also use symbols to represent predicates, which
are like functions which return statements. For example, we might have a
predicate “\(x\) is even”, “\(x\) is divisible by 6”, or “\(x\) is
prime”.

If we let \(P(x)\) represent the predicate “\(x\) is even”, then we can
write the statement “2 is even” as \(P(2)\). Similarly we can
write the statement “3 is even” as \(P(3)\). In each case we get a
statement whose truth-value can depend on the specific value of \(x\) which
was chosen — in this case, \(P(2)\) would be true, and \(P(3)\) would
be false.

If we have a predicate, we can make statements about the truth-values of a
predicate over all the possible values it can take as arguments by using things
called quantifiers.

The first quantifier we will introduce is called “for all”, written as an
upside-down capital letter A like this: \(\forall\). Here is how we write the
statement “the square of any real number is greater than or equal to 0” using
the \(\forall\) quantifier:


\[\forall x \in \mathbb{R}.\; x^2 \geq 0\]

This can be read as: “For all \(x\) in \(\mathbb{R}\), \(x\)
squared is greater than or equal to \(0\).”

The standard way of proving a statement like this is more or less what you
might expect: we have to show that every element of the set satisfies the
predicate. If the set is finite, we can do this by checking each element
individually. However, individual checking quickly gets very tedious for even
fairly small sets. Additionally, we often deal with infinite sets, where
exhaustively checking each element individually is not possible. Therefore, we
will usually prove statements of this kind by constructing an argument which
deals with every single element of the set at the same time. In fact, we have
already seen an example of such a proof: the proof that \(x\) being even
implies that \(x^2\) is also even, from a moment ago.

The other quantifier we will use is written as a back-to-front capital letter
E, like this: \(\exists\), and can be read as “there exists”. Here is how
we would write the statement “there exists a real number whose square is 4” in
mathematical notation:


\[\exists x \in \mathbb{R}.\; x^2 = 4\]

There are two possible values of \(x\) which you can use as examples to
show that this statement is true: \(2\) and \(-2\). In fact, the
standard way of proving a statement of the form \(\exists x. P(x)\) is to
pick a specific value of \(x\) and demonstrate that \(P(x)\) is true
for that \(x\) (again, as you might expect).

Exercise 1.8. Prove the statement \(\exists x \in \mathbb{R}.\; 3x + 4
= 13\) by finding a suitable value for \(x\).

The last thing we need to know in this section is how to negate statements that
contain quantifiers. Here goes:


	The negation of the statement \(\forall x. P(x)\) is \(\exists x.
\neg P(x)\).


	The negation of the statement \(\exists x. P(x)\) is \(\forall x.
\neg P(x)\).




This is all rather pleasingly symmetric, isn’t it? Try to make sense of these
two rules if you can; they will be useful later. Hopefully if you think about
them for a bit you’ll be able to persuade yourself intuitively why they are
true.

Exercise 1.9. Show that the statement \(\forall x \in \mathbb{R}.\;
x < x^2\) is false by finding a counterexample — that is, a value of
\(x\) such that \(x < x^2\) does not hold. Do you see how we are using
the first of the above two rules for negating statements with quantifiers here?





          

      

      

    

  

    
      
          
            
  
Monoids

You are probably already aware of monoids (via the Monoid type class),
since they come up quite often in programming. We’ll just quickly remind
ourselves about what makes something a monoid and cover a few examples, but in
a slightly more mathematically-oriented way. The main aim of this section is to
make you a bit more comfortable about mathematical ideas and notations by using
them to describe an idea which you are hopefully already familiar with. Another
purpose of this section is to prepare you for the next section, in which we
will talk about a specific kind of monoid which turns out to be rather
important.

Here are a few rules about how adding integers together works:


	If we add together two integers, we always get another integer.


	It doesn’t matter what order we bracket up additions, we always get the same
answer. That is, \((x + y) + z\) is always the same as \(x + (y +
z)\) for any integers \(x, y, z\).


	Adding \(0\) to any integer yields the same integer.




Here are a few more rules about how multiplying integers works:


	If we multiply two integers, we always get another integer.


	It doesn’t matter what order we bracket up multiplications, we always get the
same answer. That is, \((xy)z\) is always the same as \(x(yz)\) for
any integers \(x, y, z\).


	Multiplying any integer by \(1\) yields the same integer.




Now, instead of integers, we will consider a different set: the set of
truth-values \(\{T, F\}\). This set corresponds to the Boolean type in
PureScript. Here are some rules for how the “logical and” operation
\((\land)\) works on truth-values:


	If we apply the \(\land\) operation to two truth-values, we always get
another truth-value.


	It doesn’t matter what order we bracket up \(\land\), we always get the
same answer. That is, \((x \land y) \land z\) is the same as \(x
\land (y \land z)\) for all \(x, y, z\).


	\(P \land T\) is always the same as \(P\), for any truth-value
\(P\). If it’s not obvious what I mean by \(P \land T\), it means the
same thing as the PureScript code p && true.




Hopefully a pattern will be starting to emerge: in each case, we have a set,
an operation which gives us a way of combining two elements of that set to
produce another element of the same set, and some rules that the operation
should satisfy. The general definition of a monoid is as follows:

A monoid is a set \(M\), together with an operation \(*\), such that
the following laws hold:


	Closure. \(\forall x, y \in M.\; x * y \in M\).


	Associativity. \(\forall x, y, z \in M.\; (x * y) * z = x * (y * z)\).


	Identity. \(\exists e \in M.\; \forall x \in M.\; e * x = x * e = x\).




Looking back to the examples above, we have the monoids of:


	the integers under addition, where the set is \(\mathbb{Z}\), the
operation is addition, and the identity element is \(0\),


	the integers under multiplication, where the set is \(\mathbb{Z}\), the
operation is multiplication, and the identity element is \(1\),


	truth values under logical and, where the set is \(\{T, F\}\), the
operation is \(\land\), and the identity element is \(T\).




The operation \(*\) corresponds to append in PureScript, and that the
identity element (conventionally written \(e\)) corresponds to mempty
in PureScript.

We will now look at a few non-examples of monoids and talk about why they fail
to be monoids.

First, if we take the set of natural numbers which are less than 4, that is
\(\{0, 1, 2, 3\}\), and take addition as the operation, this fails to be a
monoid because it does not satisfy closure. To show this we need to find a pair
of elements such that their sum is not in the set. One such choice is \(3
+ 1\), which of course equals \(4\), which is not in the set. We say that a
set is closed under an operation if performing that operation on two elements
of the set always produces another element of the set; this is where the name
“closure” comes from.

An example of something failing to be a monoid because the operation is not
associative could be the set of floating point number values under addition.
For example, try (0.1 + 0.2) + 0.3 in a console, and compare the result to
0.1 + (0.2 + 0.3).

An example of something failing to be a monoid because of a lack of an
identity element could be the set of even numbers under multiplication. The
first two laws are satisfied, but since 1 is not an even number, we don’t have
an identity element.

A brief interlude on notation: if we want to refer to a specific monoid, we
write it as a pair where the first element is the set and the second is the
operation. For example, the monoid of integers under addition is written as
\((\mathbb{Z}, +)\). If it is clear from context which operation we are
talking about, we often omit the operation and just write the set, e.g. we
might simply say \(\mathbb{Z}\) is a monoid.

Exercise 2.1. Consider the set of natural numbers together with the
operation of subtraction: \((\mathbb{N}, -)\). This is not a monoid. Can
you say which of the three laws fail to hold (it might be more than one) and
why?

Exercise 2.2. The set of rational numbers is the set of numbers which can
be written as the ratio of two integers \(\frac{a}{b}\). There is a
short-hand notation for this set too: \(\mathbb{Q}\) (for “quotient”).
Show that \((\mathbb{Q}, +)\) is a monoid by checking each of the three
laws. What is the identity element?


Uniqueness of identity elements

Exercise 2.3. (Harder) Prove that a monoid can only have one identity
element. To do this, first suppose that you have two elements of some monoid;
call them, say, \(e\) and \(e'\), and then show that if they are both
identity elements then they must be equal to each other. Be careful here: it’s
not enough to take one specific example of a monoid and show that it only has
one identity element. You have to construct an argument which will work for
any monoid, which means you aren’t allowed to assume anything beyond what is
in the definition of a monoid.


Note

In general, if we want to prove that there is a unique element of some set
which has some particular property, we do this by taking two arbitrary
elements of the set, assuming that they both have this property, and then
showing that they must be equal.
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Groups

Suppose we have some arbitrary monoid \((M, *)\), and we are given two
elements \(a, b \in M\), and we want to solve an equation of the form:


\[a * x = b\]

That is, we want to find some \(x \in M\) such that the equation is
satisfied. Can we always do this?

We will start by looking at some examples. First consider \((\mathbb{Z},
+)\). In this case, one example of such an equation might be this:


\[4 + x = 7\]

You can probably see how to solve this already: simply subtract 4 from both
sides, and you’re left with this:


\[x = 7 - 4 = 3\]

Easy. In fact, with this monoid, we can always solve this kind of equation,
regardless of which values of \(a\) and \(b\) we are given: in general,
the solution is \(x = b - a\).

Now we consider a different monoid: \((\mathbb{N}, +)\). Can we solve the
following equation with this monoid?


\[4 + x = 2\]

We can’t! If we were working with a set which contains negative numbers, we
would be fine: in this case, the answer would be \(-2\). But \(-2
\notin \mathbb{N}\).

Exercise 3.1. Can you think of another example of a monoid \(M\) and
elements \(a, b \in M\) so that the equation \(a*x = b\) has no
solutions in \(M\)? Hint: we discussed one possible monoid in the previous
chapter.

So it appears that there’s some fundamental difference between
the monoids \((\mathbb{Z}, +)\) and \((\mathbb{N}, +)\). This suggests
that there might be a way of categorising monoids, based on whether any
equation of this form can be solved. Our next task as mathematicians is to try
to make this a bit more precise!

We do this by defining a new algebraic structure called a group, which is a
monoid with one extra requirement. Suppose we have a monoid \((G, *)\). We
say that \((G, *)\) is a group if and only if it satisfies this additional
law:


	Inverses. \(\forall g \in G.\; \exists h \in G.\; g * h = h * g = e\)




That is, every element has an inverse, and combining an element with its
inverse gives you the identity.

If you’re wondering why I’m using different letters now, it’s nothing more than
a convention: people generally use \(G\) to refer to some arbitrary group,
and lowercase letters starting from \(g\) to refer to elements of a group.

We often omit the \(*\) symbol; you might see people expressing the above
property as \(\forall g \in G.\; \exists h \in G.\; gh = hg = e\).

\((\mathbb{Z}, +)\) is the first example of a group we will consider. In
this group, the inverse of \(1\) is \(-1\), the inverse of \(-5\)
is \(5\), and in general the inverse of \(x\) is \(-x\).

\((\mathbb{N}, +)\) is not a group, because no positive elements have
inverses.

\((\mathbb{Q}, +)\) and \((\mathbb{R}, +)\) are both groups, and these
groups both have the same rule for finding inverses as we saw with
\((\mathbb{Z}, +)\). That is, we find the inverse of an element by
multiplying by \(-1\).

The trivial monoid is also a group, and unsurprisingly we call it the trivial
group. To show that the trivial monoid is a group, we need to find an inverse
for every element. Because the trivial monoid only has one element, there’s
only one element which we need to find an inverse for: \(e\).  Similarly
there’s only one candidate for that inverse: also \(e\). We already know
that \(e * e = e\) so we are good; \(e^{-1} = e\), and \(\{e\}\) is
a group.


Uniqueness of inverses

It turns out that in any group, every element has exactly one inverse. We can
prove this:

Let \((G, *)\) be a group, and let \(g \in G\). Suppose we have two
additional elements, \(h_1, h_2 \in G\), such that \(h_1\) and
\(h_2\) are both inverses of \(g\).

Then:


	\(h_1\) is equal to \(h_1 * e\), since \(e\) is the identity
element.


	\(h_1 * e\) is in turn equal to \(h_1 * (g * h_2)\): since \(g\)
and \(h_2\) are inverses, we can replace \(e\) with \(g * h_2\).


	\(h_1 * (g * h_2)\) is equal to \((h_1 * g) * h_2\) by the
associativity law.


	\((h_1 * g) * h_2\) is equal to \(e * h_2\) since \(g\) and
\(h_1\) are inverses.


	\(e * h_2\) is just \(h_2\).




So \(h_1 = h_2\), and therefore we have shown that any element has exactly
one inverse.

Because elements of a group always have exactly one inverse, we can talk about
the inverse of an element, as opposed to just an inverse of an element
(just like with identity elements of monoids). Also, we can define a notation
for the inverse of an element: if \(g\) is some element of a group, then we
often write the inverse of \(g\) as \(g^{-1}\).


Warning

This notation can be a little treacherous: it isn’t always the same as
exponentiation of numbers which you have probably seen before. It depends on
the group we’re talking about. For example, we saw that in
\((\mathbb{Z}, +)\), we find the inverse of an element by negating it.
So in \((\mathbb{Z}, +)\), we could write that \(4^{-1} = -4\).
Normally, however, we would expect that \(4^{-1}\) means the same thing
as \(1/4\). This ambiguity can be a bit awkward, so it’s best to avoid
this notation for inverses in cases where it can be ambiguous.
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Rings

Congratulations on getting this far — we are finally ready to introduce rings!

I will begin by reminding you of some properties that the real numbers have.

Firstly, \((\mathbb{R}, +)\) is an Abelian group, where the identity
element is \(0\).

Secondly, \((\mathbb{R}, \times)\) — that is, the set \(\mathbb{R}\)
together with multiplication — is a monoid, where the identity element is
\(1\).

Thirdly, multiplication distributes over addition. What this means is that
for all \(x, y, z \in \mathbb{R},\)


\[ \begin{align}\begin{aligned}x(y + z) = xy + xz\\(x + y)z = xz + yz.\end{aligned}\end{align} \]

Now we will consider a different set: the set of truth-values \(\{T, F\}\),
which from now on I will call \(\mathrm{Bool}\). I will first introduce a
new operation on \(\mathrm{Bool}\) called exclusive-or or XOR for
short, written \(\oplus\):



	\(P\)

	\(Q\)

	\(P \oplus Q\)





	T

	T

	F



	T

	F

	T



	F

	T

	T



	F

	F

	F






An easy way to remember this is that \(P \oplus Q\) is true if and only if
\(P\) is different from \(Q\).

Firstly, \((\mathrm{Bool}, \oplus)\) is an Abelian group, with identity
\(F\) (check this yourself if you want to).

Secondly, \((\mathrm{Bool}, \land)\) is a monoid, with identity \(T\)
(we saw this monoid earlier on, in the monoids chapter).

Thirdly, \(\land\) distributes over \(\oplus\); that is, for all
\(P, Q, R \in \mathrm{Bool},\)


\[ \begin{align}\begin{aligned}P \land (Q \oplus R) = (P \land Q) \oplus (P \land R)\\(P \oplus Q) \land R = (P \land R) \oplus (Q \land R)\end{aligned}\end{align} \]

I also encourage you to check this for yourself. Note that there are eight
possibilities to consider, since we need to check that this works for any
choice of \(P, Q,\) and \(R\).

The last example I will talk about before giving you the definition of a ring
is \(\mathbb{Z}_3\), the set of integers modulo \(3\), which we saw in
the previous chapter. Recall that \(\mathbb{Z}_3\) has three elements:


\[\mathbb{Z}_3 = \{\overline{0}, \overline{1}, \overline{2}\}\]

We saw in the previous chapter how to define an addition operation on
\(\mathbb{Z}_3\) so that \((\mathbb{Z}_3, +)\) is an Abelian group,
with identity \(\overline{0}\).

I will now reveal that we can define a multiplication operation in
\(\mathbb{Z}_3\), which I will write as \(\cdot\), like this:


\[\overline{x} \cdot \overline{y} = \overline{xy}\]

For example, \(\overline{1} \cdot \overline{2} = \overline{1 \times 2} =
\overline{2}\), and \(\overline{2} \cdot \overline{2} = \overline{2 \times
2} = \overline{4} = \overline{1}\).

This makes \((\mathbb{Z}_3, \cdot)\) into a monoid, with identity
\(\overline{1}\).

Finally, multiplication distributes over addition in \(\mathbb{Z}_3\) too;
we sort of get this “for free” since we have defined multiplication and
addition in terms of normal multiplication and addition in \(\mathbb{Z}\).

Putting all this together, we see that \(\mathbb{Z}_3\) is a ring. In fact,
\(\mathbb{Z}_m\) is a ring for any positive integer \(m\), with
multiplication defined in exactly the same way. So for example, in
\(\mathbb{Z}_{12}\), we have \(\overline{5} \cdot \overline{6}
= \overline{30} = \overline{6}\).


The definition

Now that you have seen some examples, I will give you the definition of a ring.
A ring is a set \(R\) equipped with two binary operations \(+\) and
\(\cdot\), called “addition” and “multiplication” respectively, such that
the three following laws hold:


	\((R, +)\) is an Abelian group.


	\((R, \cdot)\) is a monoid.


	Multiplication distributes over addition. That is, for all \(x, y, z
\in R,\)





\[ \begin{align}\begin{aligned}x \cdot (y + z) = x \cdot y + x \cdot z\\(x + y) \cdot z = x \cdot z + y \cdot z.\end{aligned}\end{align} \]

From now on I will generally omit the \(\cdot\) symbol and represent
multiplication by writing two symbols next to each other; that is, I will write
\(xy\) to mean \(x \cdot y\).

We call the the identity element of the group \((R, +)\) the additive
identity of the ring \(R\). The additive identity is written as
\(0_R\) or just \(0\) when it’s clear from context which ring \(R\)
we are talking about. Similarly, we call the identity element of the monoid
\((R, \cdot)\) the multiplicative identity of the ring \(R\). The
multiplicative identity is written as \(1_R\) or simply \(1\) when it’s
clear which ring we are using.

Since \(R\) forms a group under addition, every element \(x \in R\) has
an additive inverse, which we will write \(-x\). We also write \(x -
y\) as a shorthand for \(x + (-y)\).

An important thing to note is that in a ring, multiplication need not be
commutative! A ring in which the multiplication operation is commutative is
called a commutative ring. So far, all the rings we have seen have
commutative, but we will soon see some examples of non-commutative rings.

One last thing that I should mention quickly: just as there is a trivial monoid
and a trivial group, there is a trivial ring with just one element, usually
written \(\{0\}\). This ring is called the zero ring. It is not very
interesting so we often rule it out by saying we a dealing with a “non-zero
ring”; this phrase is nothing more than a shorthand for “any ring but the zero
ring”.



Properties of rings

So I have just shown you three examples of rings: \(\mathbb{R}\),
\(\mathrm{Bool}\), and \(\mathbb{Z}_m\). I will introduce a few more
exotic examples of rings in subsequent chapters, but for now, we will establish
a few properties which all rings have.

The first property is that \(\forall x \in R.\; 0x = 0\). That is,
multiplying anything by \(0\) yields \(0\). We will prove this using
just the ring laws, so that we know it is true for any ring.

Let \(R\) be a ring, and let \(x \in R\). Then:


	We know that \(0x = (0 + 0)x\), since \(0\) is the additive
identity, and so anything is equal to itself plus \(0\).


	By the distributive law, \((0 + 0)x = 0x + 0x\).


	We now have that \(0x = 0x + 0x\). Because we know that \(R\) is a
group under addition, we can subtract \(0x\) from both sides, yielding
\(0 = 0x\), as required.




Another property which holds for all rings \(R\) is that \(\forall x,
y \in R.\; (-x)y = -(xy)\). We can prove this too:


	By distributivity, we know that \(xy + (-x)y = (x + (-x))y.\)


	Since \(-x\) is the additive inverse of \(x\), we know that
\((x + (-x))y = 0y.\)


	We proved a moment ago that \(\, 0y = 0.\)


	So \(\, xy + (-x)y = 0; \,\) subtracting \(xy\) from both sides yields
\((-x)y = -(xy)\), as required.




Exercise 4.1. Let \(R\) be a ring. Prove that \((-x)(-y) = xy\) for
all \(x, y \in R\). Maybe you will find this a satisfying explanation of
why “a minus times a minus is a plus”!



Semirings

We might want to come up with a slightly weaker structure than a ring, in which
we only require that \((R, +)\) is a commutative monoid rather than a
group. Unfortunately, though, if we do this, our proof that anything times
\(0\) is \(0\) will no longer work, because in the proof we used the
fact that any ring forms a group under its addition operation.

Having multiplication by \(0\) always produce \(0\) is a useful
property, though, so to make sure it still holds, we add it as an extra law. We
then obtain the following:

A semiring is a set \(R\) equipped with two binary operations \(+\)
and \(\cdot\), called “addition” and “multiplication” respectively, such
that the three following laws hold:


	\((R, +)\) is a commutative monoid.


	\((R, \cdot)\) is a monoid.


	Multiplication distributes over addition. That is, for all \(x, y, z
\in R,\)





\[ \begin{align}\begin{aligned}x \cdot (y + z) = x \cdot y + x \cdot z\\(x + y) \cdot z = x \cdot z + y \cdot z.\end{aligned}\end{align} \]


	Anything multiplied by \(0\) is \(0\).




I won’t spend too much time talking about semirings in this guide, as most of
the number systems you’re likely to be dealing with as a programmer have more
structure. I’ll just give a couple of examples before we move on:

The natural example of a semiring is the natural numbers \(\mathbb{N}\);
recall that \((\mathbb{N}, +)\) is a commutative monoid but not a group.
Therefore, \(\mathbb{N}\) is a semiring but not a ring.

The simplest semiring which is not a ring is called the Boolean semiring. It
has just two elements, \(0\) and \(1\), and it is defined by the
equation \(1 + 1 = 1\). Note that we don’t need to specify the results of
adding or multiplying any other elements, because the semiring laws already
tell us what they will be. The Boolean semiring is different from the ring
\(\mathrm{Bool}\) above; recall that in \(\mathrm{Bool}\), we have
\(1 + 1 = 0\).
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Matrices

Matrices are a source of many important examples of rings and fields, so we’re
going to get a bit more concrete in this chapter and talk about matrices for a
bit. You may already be aware that matrices have many applications in
computing; two examples that spring to my mind are computer graphics and
machine learning.


Vectors

We begin by talking about vectors in \(\mathbb{R}^n\); if you haven’t
seen this before, an element of \(\mathbb{R}^n\) is an ordered collection
of \(n\) elements of \(\mathbb{R}\). We usually write vectors in a
column, and it’s also conventional to use bold symbols for vectors (to help
distinguish them from scalars, which are elements of \(\mathbb{R}\)). For
example:


\[ \begin{align}\begin{aligned}\begin{split}\boldsymbol{x} = \begin{bmatrix}1\\0\end{bmatrix}\end{split}\\\begin{split}\boldsymbol{y} = \begin{bmatrix}4\\-2\end{bmatrix}\end{split}\\\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^2\end{aligned}\end{align} \]

Sometimes it’s helpful to be able to write vectors on one line, and we do so by
listing the components in parentheses, separated by commas. For example,
\(\boldsymbol{x} = (1, 0)\).

We define addition for \(\mathbb{R}^n\) by adding corresponding components:


\[\begin{split}\boldsymbol{x} + \boldsymbol{y}
  &= \begin{bmatrix}1\\0\end{bmatrix} + \begin{bmatrix}4\\-2\end{bmatrix} \\
  &= \begin{bmatrix}1+4\\0+(-2)\end{bmatrix} \\
  &= \begin{bmatrix}5\\-2\end{bmatrix}\end{split}\]

The identity element of vector addition is the zero vector; the vector which
has a zero for every component. This is quite an important vector so we have a
short-hand notation for it, which is a bold zero:


\[\begin{split}\boldsymbol{0} = \begin{bmatrix}0\\0\end{bmatrix}\end{split}\]

We can also multiply every component of a vector by some fixed number. This
operation is called scalar multiplication:


\[\begin{split}3\boldsymbol{x} &= \begin{bmatrix}3 \times 1\\3 \times 0\end{bmatrix} \\
                &= \begin{bmatrix}3\\0\end{bmatrix}\end{split}\]

Exercise 5.1. We have seen that \(\mathbb{R}^2\) is closed under vector
addition (that is, adding two vectors always gives you another vector), and
also that there is an identity element for vector addition in
\(\mathbb{R}^2\). Now, show that \((\mathbb{R}^2, +)\) is a monoid
by checking the remaining monoid law (associativity).

Exercise 5.2. Show that \((\mathbb{R}^2, +)\) is a group by explaining
how to find the inverse of an element.


Note

\((\mathbb{R}^n, +)\) is actually a group for any \(n\), not
just \(n = 2\). We will spend the majority of this chapter working
with \(\mathbb{R}^2\), but everything we’re doing generalises very
naturally to larger choices of \(n\).
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Integral domains

Now that you have seen a few examples of rings, we will talk about a
particular kind of ring called an integral domain.

There is a fact about \(\mathbb{R}\) which you might know already, called
the cancellation law, which says that for any \(a, b, c \in
\mathbb{R}\), such that \(a \neq 0\) and \(ab = ac\), it must be the
case that \(b = c\). We can establish this without too much effort: since
\(a\) is nonzero, we can divide both sides of the equation \(ab = ac\)
by \(a\), and this yields the desired result.

Now \(\mathbb{R}\) is a ring, so we might now wonder if a version of the
above statement is true for all rings. In fact it is not, and at this point I
can show you two counterexamples!

First recall the ring \(\mathbb{Z}_{12}\). In this ring, if we let \(a
= \overline{6}, b = \overline{5},\) and \(c = \overline{1}\), then \(a
\neq \overline{0}\) and \(ab = ac\), but \(b \neq c\) (check this!).

Now, consider the ring \(\mathrm{Mat}(2;\mathbb{R})\). In this ring, we
have


\[\begin{split}\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}
\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}
=
\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}\end{split}\]

but also


\[\begin{split}\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}
\begin{bmatrix} -1 & -1 \\ 1 & 1 \end{bmatrix}
=
\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}\end{split}\]

so if we define


\[ \begin{align}\begin{aligned}\begin{split}A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}\end{split}\\\begin{split}B = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}\end{split}\\\begin{split}C = \begin{bmatrix} -1 & -1 \\ 1 & 1 \end{bmatrix}\end{split}\end{aligned}\end{align} \]

then we have \(AB = AC\) and \(A \neq 0\), but \(B \neq C\).

So what do we do now? Clearly the cancellation law holds for some rings, but
not all of them. Whenever we come across a new ring, or if we are just working
with some abstract ring and we don’t know which specific ring it is, we would
like to be able to say whether the cancellation law holds in it.

To do this we need a new definition. Let \(R\) be any ring, and let
\(a \in R\) with \(a\) nonzero. We say that \(a\) is a
zero-divisor if there exists a nonzero \(b \in R\) such that either
\(ab = 0\) or \(ba = 0\).


Note

In a commutative ring \(ab\) is always equal to \(ba\), so it is
redundant to say “either \(ab = 0\) or \(ba = 0\)”; we might as well
just say “\(ab = 0\)”. However, we want our theory to work with
noncommutative rings too, which is why we specify that either \(ab = 0\)
or \(ba = 0\).


  
    

    Fields
    

    
 
  

    
      
          
            
  
Fields

We are finally ready to talk about one of the most important types of rings,
namely fields.

Let \(R\) be a ring, and let \(x \in R\). We say that \(x\) is a
unit if there exists some \(y \in R\) such that \(xy = yx = 1\),
that is, if \(x\) has a multiplicative inverse. For example, in any ring,
\(1\) is always a unit, and \(0\) is never a unit.

Then, a field is defined as a commutative ring in which every nonzero element
is a unit. We can equivalently say that a field is a commutative ring for which
the nonzero elements form a group under multiplication. We usually use the
notation \(x^{-1}\) for the multiplicative inverse of \(x\) in a field.

Here are some examples of fields which we have already seen:


	The real numbers, \(\mathbb{R}\)


	The rational numbers, \(\mathbb{Q}\)


	The integers modulo \(2\), \(\mathbb{Z}_2\). Note that the
multiplicative inverse for \(1\) in any ring necessarily exists (it is
also \(1\)), and this ring has no other nonzero elements to consider, so
it must be a field.




Here are some non-examples:


	The ring of integers, \(\mathbb{Z}\). This fails to be a field because
the only nonzero elements with multiplicative inverses are \(1\) and
\(-1\); there is no integer which can be multiplied by \(2\) to yield
\(1\), for example.


	The ring of integers modulo \(4\), \(\mathbb{Z}_4\). This fails to be
a field because the element \(\overline{2}\) does not have a
multiplicative inverse. We can check this exhaustively:


\[\begin{split}\overline{1} \cdot \overline{2} = \overline{2} \\
\overline{2} \cdot \overline{2} = \overline{0} \\
\overline{3} \cdot \overline{2} = \overline{2}\end{split}\]

None of these are equal to \(\overline{1}\), so we can conclude that none
of them is a multiplicative inverse of \(\overline{2}\).



	The ring of \(2 \times 2\) matrices with entries in \(\mathbb{R}\).
This fails to be a field because it is non-commutative, as we have seen, and
also because there are nonzero elements which do not have multiplicative
inverses.




We also have a name for rings in which all nonzero elements are units but
multiplication is not necessarily commutative: these are called division
rings, or sometimes skew fields. It just happens that most of the
interesting examples of division rings are also fields, so we tend to spend
more time thinking about fields.  There is, however, one important example of a
division ring which is not a field, which we will see later on.


A quick diversion into set theory

There are a couple of important results concerning fields which we will soon
establish, but first we need another quick diversion into set theory. This
builds upon the Permutations section in the chapter on
groups, so if you need a refresher now might be a good time to revisit it.


Subsets

Let \(A\) and \(B\) be sets. We say that \(A\) is a subset of
\(B\) if \(x \in A \Rightarrow x \in B\), that is, every element of
\(A\) is also an element of B. Symbolically, we write \(A \subseteq
B\).

One consequence of this definition is that every set is a subset of itself. If
we want to rule out this case, we would say that \(A\) is a proper subset
of \(B\), and this is written \(A \subset B\).



Images of functions

We call the set of elements that can be produced as a result of applying
a function \(f\) to an element of its domain the image of \(f\).
Note that this set is necessarily a subset of the codomain; in fact, another
way of defining a surjective function is one whose image is equal to its
codomain.

Notationally, the image of a function \(f : X \rightarrow Y\) is written as
\(f(X)\) — this is arguably a bit of an abuse of notation, as this looks
like we’re applying a function to a set, which, if we’re being pedantic,
doesn’t make sense — but it is defined as follows:


\[f(X) = \{\, f(x) \,|\, x \in X \,\}\]

So we have that \(f(X) \subseteq Y\) is true for any function \(f : X
\rightarrow Y\), and also that \(f(X) = Y\) if and only if \(f\) is
surjective.



Injectivity and surjectivity with finite sets

Here is an important result which we will need shortly:


	Let \(X\) be a set with finitely many elements, and let \(f : X
\rightarrow X\) be a function. Then \(f\) is injective if and only if it
is surjective.




In this proof we will use \(n\) to refer to the size of the set \(X\),
i.e. \(X\) has \(n\) distinct elements.

First, suppose \(f\) is injective. That is, if \(x \neq y\), then
\(f(x) \neq f(y)\). It follows that \(f(X)\) has at least \(n\)
elements, as each of the \(n\) elements of \(X\) which we can apply
\(f\) to is mapped to a distinct element of the codomain of \(f\)
(which, here, is also \(X\)). Since \(X\) is also the codomain of
\(f\), we have that \(f(X) \subseteq X\), and in particular,
\(f(X)\) can have no more than \(n\) elements (since \(X\) only has
\(n\) elements). So \(f(X)\) has exactly \(n\) elements, and since
each of them is an element of \(X\) we can conclude that \(f(X) = X\),
i.e. \(f\) is surjective.

Conversely, suppose that \(f\) is surjective, i.e. each element of
\(X\) can be obtained by applying \(f\) to some (possibly different)
element of \(X\). In this case it must be injective; if it weren’t, there
would be at least two elements of \(X\) which were mapped to the same thing
by \(f\), and then of the remaining \(n - 2\) elements of \(X\), we
have \(n - 1\) elements of \(X\) to reach, which is not possible.

Okay, that’s everything. Back to fields!




Every field is an integral domain

This is fairly straightforward to prove. Let \(F\) be a field, and let
\(a, b \in F\), with \(a \neq 0\). Suppose \(ab = 0\). Since
\(F\) is a field, \(a^{-1}\) exists. Multiplying both sides by
\(a^{-1}\) yields \(a^{-1}ab = a^{-1}0\), which simplifies to \(b
= 0\). That is, \(F\) has no zero-divisors. We have by assumption that
\(F\) is commutative (since this is one of the requirements for a field)
and therefore \(F\) is an integral domain.

This gives us a useful trick for determining whether some ring is a field or
not: since all fields are integral domains, we can immediately deduce that a
ring cannot be a field if it fails to be an integral domain, e.g. if it has any
zero-divisors. Note that for two of the three non-examples of fields listed
earlier, namely \(\mathbb{Z}_4\) and \(\mathrm{Mat}(2;\mathbb{R})\), it
can be shown that they are not fields in this way.

Let’s do a quick recap on the hierarchy we have seen so far; we have:


	rings \(\supset\) commutative rings \(\supset\) integral domains
\(\supset\) fields.




That is, every commutative ring is a ring (but not every ring is
commutative), every integral domain is a commutative ring (but not every
commutative ring is an integral domain), and so on.



Every finite integral domain is a field

This is slightly more difficult to prove, so don’t worry if the proof doesn’t
make complete sense to you at first.

Let \(R\) be a finite integral domain, and let \(a \in R\) with
\(a \neq 0\). Now, define a function \(\lambda_a : R \rightarrow R\) by
\(\lambda_a(x) = ax\), that is, the function \(\lambda_a\) represents
multiplication by \(a\). Now let \(b, c \in R\), and notice that the
cancellation law for integral domains tells us that \(ab = ac\) implies
\(b = c\). That is, if \(\lambda_a(b) = \lambda_a(c)\), then \(b =
c\). This is precisely what it means for the function \(\lambda_a\) to be
injective.

Using our previously established result that an injective function on a finite
set must also be surjective, we can deduce that \(\lambda_a\) is
surjective, and consequently also bijective. Therefore, it must have an inverse
function \(\lambda_a^{-1}\), and in particular if we let \(d =
\lambda_a^{-1}(1)\), then we have that \(ad = 1\), i.e. \(d\) is a
multiplicative inverse for \(a\).

We have now found a multiplicative inverse for every nonzero element of
\(R\), and we have by assumption that \(R\) is commutative, so it
follows that \(R\) is a field.

Look back now to exercise 6.4 in the previous chapter, which asks you to
provide a rule for whether \(\mathbb{Z}_m\) is an integral domain given any
\(m \geq 2\). This is quite a difficult exercise but the result is quite
useful, so I recommend that you look at the solution now if you weren’t able to
solve it yourself.

Using our new result that every finite integral domain is a field, we can now
strengthen the result we found in exercise 6.4: since \(\mathbb{Z}_m\) is
finite, if it is an integral domain, it must be a field. The field of integers
modulo \(m\) for an appropriately chosen \(m\) (I’m deliberately being
vague to avoid spoiling you for exercise 6.4 if you want to have another go at
it) is generally my go-to example of a field, as these fields tend to be the
simplest to deal with and can be faithfully represented on computers very
easily — unlike, say, \(\mathbb{R}\).
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Complex numbers

We encountered the set \(\mathbb{R}^2\) in the Matrices chapter, and
defined an addition operation which made \((\mathbb{R}^2, +)\) an abelian
group. In this section we will come across a multiplication operation on
\(\mathbb{R}^2\) and we will see that with these two operations,
\(\mathbb{R}^2\) can be made into a field, which is called the field of
complex numbers. When we are making use of the field structure we will
usually write this field as \(\mathbb{C}\) rather than
\(\mathbb{R}^2\).

Complex numbers have a variety of applications, including in geometry, for e.g.
representing figures in two dimensions, for modelling behaviour of electrical
signals, and for analysing the behaviour of systems which can be modelled using
differential equations, such as how populations of different species in a food
web change over time, how heat flows through an object, or how mechanical
systems like suspension in a car will behave. They also function as useful
tools in many other areas of mathematics. For instance, they play a major role
in the proof that quintic equations — that is, equations of the form
\(ax^5 + bx^4 + cx^3 + dx^2 + ex + f = 0\) — cannot be solved in general,
as well as offering some nifty tricks to perform otherwise difficult
integrations of real-valued functions.

First, instead of writing elements of \(\mathbb{R}^2\) in the usual way,
i.e. \((a, b)\), we will write them as \(a + bi\), where \(a\) and
\(b\) are real numbers. For example, we write \((1,2)\) as \(1 +
2i\), we write \((1,0)\) as just \(1\), and we write \((0,1)\) as
just \(i\). For a complex number \(a + bi\), we call \(a\) the
“real part”, and \(b\) the “imaginary part”.

Therefore, to add two complex numbers together, we simply add the real and
imaginary parts. That is, \((a + bi) + (c + di) = (a+c) + (b+d)i\).

For the multiplication operation, if we remember that \(i^2 = -1\), the
rest sort of falls out. That is, to multiply two complex numbers together,
we can write \((a + bi)(c + di) = ac + adi + bci + bdi^2\), making use of
distributivity, and then using distributivity again (but in the reverse
direction) and replacing \(i^2\) with \(-1\), we can write this as
\((ac - bd) + (ad + bc)i\).


Note

This approach is a bit sloppy because we are assuming that
\(\mathbb{C}\) is a field before even defining its multiplication
operation. I hope you can forgive me for this.
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The Euclidean Algorithm

We now return to the familiar world of the integers, where we will learn (or
perhaps remind ourselves) about what the greatest common divisor of two
integers is, and about an algorithm which allows us to compute them easily, and
why it works. This will form part of the motivation for the idea of a
euclidean ring, a structure which generalises the integers.


Integer division

Let \(a, b \in \mathbb{Z}\). We say that \(a\) divides \(b\) if
there exists some \(q \in \mathbb{Z}\) such that \(aq = b\). Another
way of understanding this is that \(b\) can be divided exactly by \(a\)
to yield \(q\). In symbols, this is written \(a \mid b\).

For example, \(5 \mid 20\), and also \(4 \mid 20\).

Of course, we often have to deal with the less happy situation where integers
don’t divide exactly into each other. All hope is not lost, though: if we have
two integers \(a, b\), with \(b > 0\), then there always exists a pair
of integers \(q\) and \(r\) such that \(a = qb + r\), and \(0
\leq r < b\). We usually call \(q\) the quotient and we call \(r\)
the remainder. You probably know already that a remainder of \(0\)
indicates that the pair of integers we are dealing with do divide into each
other exactly.



Greatest common divisors

If \(d\) divides \(a\), and \(d\) also divides \(b\), we say
that \(d\) is a common divisor of \(a\) and \(b\). If \(d\)
is greater than any other common divisor of \(a\) and \(b\), we say
that \(d\) is the greatest common divisor of \(a\) and \(b\).
This chapter is mostly concerned with finding the greatest common divisor of
any pair of integers; we can do this by using an algorithm called the Euclidean
Algorithm.

Before we go on to talk about the Euclidean Algorithm, though, we first need a
result concerning divisors. Here it comes:

Let \(a, b, d \in \mathbb{Z}\), and suppose that \(d \mid a\) and that
\(d \mid b\).  Then, \(d \mid ma + nb\) for any \(m, n \in
\mathbb{Z}\).

To prove this, we go back to the definition; we just need to find an integer
\(c\) such that \(cd = ma + nb\). How might we go about that? Well we
already know that \(d \mid a\), so we know that there is an integer
\(c_1\) such that \(c_1d = a\). We also know that \(d \mid b\), so
we know that there is another integer \(c_2\) such that \(c_2d = b\).
It follows, then, that \(mc_1d = ma\), and that \(nc_2d = nb\). Add
these equations together and you get \(mc_1d + nc_2d = ma + nb\). The
distributive law allows us to rearrange the left hand side, yielding
\((mc_1 + nc_2)d = ma + nb\), from which we can immediately deduce that
\(d \mid ma + nb\).



The Euclidean Algorithm

We will start by working through an example; suppose we want to find the
greatest common divisor of \(a = 1071\) and \(b = 462\). Let’s call
their greatest common divisor \(d\). So immediately we have that \(d
\mid 1071\) and that \(d \mid 462\).

We start by dividing \(a\) by \(b\):


\[1071 = 2 * 462 + 147\]

That is, we get a quotient of \(2\) and a remainder of \(147\). How
does this help? Well, we now know that \(147 = 1071 - 2*462\). Using the
result from a moment ago, if we choose \(m = 1\) and \(n = -2\), we
have that \(d \mid ma + nb\), that is, \(d \mid 147\).

We now divide \(462\) by the remainder:


\[462 = 3 * 147 + 21\]

Using the same argument as before, we see that \(21 = 462 - 3*147\) and
therefore \(d \mid 21\). We now divide our previous remainder by our new
remainder:


\[147 = 7 * 21\]

This time, it goes exactly. The significance of this is that we have found our
GCD: it is \(21\). Why? Well, starting from the final step and working
backwards, we now know that \(21 \mid 147\). Looking to the previous step,
since \(21 \mid 147\) and \(21 \mid 21\) (note that any integer divides
itself), we can deduce using that same result from a moment ago that \(21
\mid 3 * 147 + 21\) i.e. \(21 \mid 462\). Now going back to the very first
step, we can use a similar argument to show that since \(21 \mid 462\) and
\(21 \mid 147\), we have that \(21 \mid 1071\). So we have established
that \(21\) is a common divisor of \(1071\) and \(462\). It then
follows that \(d \geq 21\).

The only way that we can have \(d \geq 21\) and \(d \mid 21\)
simultaneously is if \(d = 21\), so we’re done.

So the general form of the algorithm is that we keep dividing successive
remainders into each other until we find a pair that go exactly, and then the
last remainder is the greatest common divisor. In PureScript:

gcd :: Int -> Int -> Int
gcd a 0 = a
gcd a b = gcd b (a `mod` b)





(note that a `mod` b computes the remainder when dividing a by b.)

Exercise 9.1. Perform the Euclidean Algorithm on \(a = 1938\), \(b
= 782\).

How do we know that the algorithm terminates, though? We refer to the theorem
from the beginning of the chapter:


Note

If we have two integers \(a, b\), with \(b > 0\), then there always
exists a pair of integers \(q\) and \(r\) such that \(a = qb + r\),
and \(0 \leq r < b\).
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Polynomials

It is time to meet yet another example of a ring.

A polynomial is a finite collection of terms, all added together, where
each term is formed of a product of two things: the coefficient, and the
variable, usually \(x\), raised to a non-negative integer power.  For
example, the following are all polynomials:


\[\begin{split}&3 \\
&x \\
&3x + 2 \\
&5x^2 + 2x + 4 \\
&x^3 + 1\end{split}\]

Looking again at the example \(5x^2 + 2x + 4,\) we see that it has three
terms: namely, \(5x^2, 2x,\) and \(4\). The coefficients of these terms
are \(5, 2,\) and \(4\) respectively.

The degree of a polynomial is the highest power of \(x\) appearing. So
for example, the degree of \(5x^2 + 2x + 4\) is \(2\), and the degree
of \(x^3 + 1\) is \(3\). We write \(\deg(p)\) for the degree of a
polynomial \(p\), so e.g. \(\deg(5x^2 + 2x + 4) = 2\).

The coefficient of the term with the highest power is also important and
therefore has a special name: it is called the leading coefficient. For
example, the leading coefficient of the polynomial \(5x^2 + 2x + 4\) is
\(5\). A monic polynomial is a polynomial whose leading coefficient is
\(1\).

Polynomial addition and multiplication both work how you would expect. To add
two polynomials together, we simply add together the coefficients of matching
pairs of terms. So for example, we add together the coefficients of \(x\)
to obtain the coefficient of \(x\) in the result, we add the coefficients
of \(x^2\) to obtain the coefficient of \(x^2\) in the
result, and so on.  For example:


\[\begin{split}(5x^2 + 2x + 4) + (3x + 2)
&= (5+0)x^2 + (2+3)x + (4+2) \\
&= 5x^2 + 5x + 6\end{split}\]

To multiply polynomials of just one term, we multiply the coefficients and add
the powers. For example, \((6x)(7x^2) = (6 \times 7)x^{1 + 2} = 42x^3\). To
multiply polynomials with more than one term, we make use of distributivity to
break them down into sums of products of single terms, and then combine them.
For example:


\[\begin{split}&(5x^2 + 2x + 4)(3x + 2) \\
&= 5x^2(3x + 2) + 2x(3x + 2) + 4(3x + 2) \\
&= (5x^2)(3x) + (5x^2)(2) + (2x)(3x) + (2x)(2) + 4(3x) + 4(2) \\
&= 15x^3 + 10x^2 + 6x^2 + 4x + 12x + 8 \\
&= 15x^3 + 16x^2 + 16x + 8\end{split}\]

In the examples we have seen so far, the coefficients have come from
\(\mathbb{R}\). However, we can choose coefficients from any ring. We
denote the set of polynomials with coefficients in some ring \(R\) by
\(R[x]\).

So, if we let \(R\) be any ring, then \(R[x]\) is a ring too; the
additive and multiplicative identities in \(R[x]\) are \(0_R\) and
\(1_R\) respectively. Notice that if \(R\) is a commutative ring, then
so is \(R[x]\); this follows from how multiplication is defined in
\(R[x]\).

Here are some polynomials in the ring \(\mathbb{Z}_3[x]\):


\[\begin{split}&\overline{2} \\
&x^3 + \overline{2} \\
&\overline{2}x^2 + x + \overline{1}\end{split}\]

Note that we usually don’t bother writing down the coefficient if it is the
multiplicative identity; the second example there could also have been written
\(\overline{1}x^3 + \overline{2}\).

We have already seen that \(R\) being a commutative ring implies that
\(R[x]\) is a commutative ring. Another similar result is that if \(R\)
has no zero-divisors then neither does \(R[x]\). To see this, first notice
that if \(p, q \in R[x],\) with \(p \neq 0, q \neq 0,\) the leading
coefficient of \(pq\) is equal to the product of the leading coefficients
of \(p\) and \(q\). If a polynomial is nonzero then its leading
coefficient is necessarily also nonzero, so it follows that the leading
coefficients of \(p\) and \(q\) are both nonzero, and therefore the
leading coefficient of \(pq\) is also nonzero (here we are using the fact
that \(R\) has no zero-divisors). So \(pq\) is nonzero, and we are
done.

We can neatly wrap all of this up by simply saying that if \(R\) is an
integral domain then so is \(R[x]\).


Polynomial division

Consider the ring of polynomials with coefficients in some integral domain
\(R\). Let \(a, b \in R[x]\), with \(b \neq 0\), and \(b\)
monic. Then, there exists \(q, r \in R[x]\) such that \(a = qb + r\),
and either \(\deg(r) < \deg(b)\), or \(r = 0\).

Depending on your philosophy, it might or might not be a problem that the
following proof of this result is non-constructive, i.e. it proves that
\(q\) and \(r\) exist, but it doesn’t give you an algorithm for finding
them. It’s also a little trickier than many of the proofs we’ve seen so far, so
don’t worry if you can’t quite get your head around it straight away.  We won’t
go on to do anything that requires understanding this proof; we really just
want to make sure we’re aware of the result.

Anyway, to prove this result, we start by choosing a polynomial \(q\) which
ensures that the degree of \(a - qb\) is as small as possible. Note that it
is always possible to find such a polynomial \(q\), because the degree is a
nonnegative integer, and any set of nonnegative integers is guaranteed to have
a smallest element.

Let \(s = \deg(a - qb)\), and let c be the leading coefficient of
\(a - qb\). So the leading term of \(a - qb\) is \(cx^s\). Also,
let \(d = \deg(b)\).

Now, suppose that \(s \geq d\), and consider the polynomial \(a - (q +
cx^{s-d})b = a - qb - (cx^{s-d})b\). Since the leading term of \(b\) is
\(x^d\) (by assumption), the leading term of \((cx^{s-d})b\) is
\(cx^s\). Therefore, when we subtract \((cx^{s-d})b\) from \(a -
qb\), the \(x^s\) terms cancel and the polynomial we are left with has
degree no higher than \(s-1\). This is a contradiction: we chose \(q\)
to minimise the degree of \(a - qb\), but here we have another polynomial
\(q + cx^{s-d}\), for which \(a - (q + cx^{s-d})b\) gives us a smaller
degree still.

Because we have reached a contradiction, we can deduce that \(s < d\), i.e.
\(\deg(a - qb) < \deg(s)\). Therefore, we can define \(r = a - qb\),
and we are done: \(a = qb + r\) by construction, and also either \(r =
0\) or \(\deg(r) < \deg(b)\).

If we want to allow division by any nonzero polynomial, not just monic
polynomials, we need to impose one additional requirement: that \(R\) is a
field. In this case we can divide coefficients exactly, so if we want to divide
a polynomial \(a\) by another polynomial \(b\), we can multiply
\(b\) by the multiplicative inverse of its leading coefficient to make it
monic.


Note

For example, in \(\mathbb{R}[x]\), we can multiply the polynomial
\(2x + 1\) by \(\frac{1}{2}\) to give \(x + \frac{1}{2}\), which
is monic. Note that we could not do this if we were working in
\(\mathbb{Z}[x]\), since \(\frac{1}{2}\) is not an integer.
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Euclidean rings

Over the previous two chapters, we covered the Euclidean Algorithm, which
allows you to compute the greatest common divisor of two integers. We also
encountered a new example of a ring, namely polynomials, and noticed that they
both support a very similar kind of division.

In this chapter we will see how to generalise the Euclidean Algorithm and
discuss the resulting structure, which is called a euclidean ring.


Divisors, again

Instead of working in \(\mathbb{Z}\) we will now work in an arbitrary
integral domain \(R\). The first thing we will want to do is generalise our
definition of “divisor”; fortunately this is easy:

Let \(a, b \in R\). We say that \(a\) divides \(b\) if there exists
some \(q \in R\) such that \(aq = b\).

In fact it’s the exact same definition except that we just replace
\(\mathbb{Z}\) with \(R\). The definition of “common divisors” also
immediately generalises with no extra effort required. However, it’s less
obvious how to define a greatest common divisor, since we might not be able
to say whether whether an element of an arbitrary integral domain is greater
than some other element. We address this as follows:

Let \(a, b, d \in R\) and suppose \(d \mid a\) and also \(d \mid
b\), that is, \(d\) is a common divisor of \(a\) and \(b\). We say
that \(d\) is a greatest common divisor of \(a\) and \(b\) if
for any other common divisor \(d'\) of \(a\) and \(b\), we have
that \(d' \mid d\).

Note that we have started saying “a greatest common divisor” rather than
“the greatest common divisor”; this is because greatest common divisors are
no longer guaranteed to be unique. For example, in the previous chapter we saw
that a greatest common divisor of \(462\) and \(1071\) was \(21\).
In this setting we would also consider \(-21\) to be a greatest common
divisor of these two numbers.

I wouldn’t blame you if, at this point, you said this was a nonsense
definition, because it’s not clear that “greatest” really means anything at
this point. Don’t worry — we will clear this all up shortly.



Generalising the Euclidean Algorithm

In the last chapter we saw two key ideas which the Euclidean Algorithm relies
on to work:


	For \(a, b, d \in \mathbb{Z}\), if \(d \mid a\) and \(d \mid b\),
then \(d \mid ma + nb\) for any \(m, n \in \mathbb{Z}\).


	Remainders keep getting smaller, and are guaranteed to eventually reach
\(0\).




It’s very pleasing to see that the first of these immediately generalises from
\(\mathbb{Z}\) to an arbitrary integral domain. We can even use the exact
same proof as we did in the case of \(\mathbb{Z}\)!

However, we can’t generalise the second idea if all we have is an integral
domain — we need something a little stronger.

Let \(R\) be an integral domain. A euclidean function is a function
\(f : R \setminus \{ 0 \} \rightarrow \mathbb{N}\) satisfying:


	For \(a\) and \(b\) in \(R\), with \(b \neq 0\), there exist
\(q\) and \(r\) in \(R\) such that \(a = bq + r\) and either
\(r = 0\) or \(f(r) < f(b)\).


	For all nonzero \(a\) and \(b\) in \(R\), we have \(f(a)
\leq f(ab)\).




A euclidean ring, or euclidean domain, is then defined as an integral
domain which can be endowed with a euclidean function.


Note

On notation: if \(A\) and \(B\) are sets then their difference is
defined as


\[A \setminus B = \{\, x \in A \,|\, x \notin B \,\}\]

that is, the elements of \(A\) which are not in \(B\). So if \(R\)
is a ring, then the set \(R \setminus \{0\}\) consists of all elements of
\(R\) except \(0\). Essentially, what we are doing here is saying that
for a euclidean function \(f\), the result of applying \(f\) to
\(0\) need not be defined.
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Quaternions

It is time to introduce you to the example I mentioned earlier of a division
ring which is not a field. This division ring is called the quaternions,
and it has important applications in 3D graphics and orbital mechanics of
satellites, due to its ability to represent orientations and rotations of
objects in three dimensions in a simple and efficient way.

The quaternions were first described in 1843 by William Rowan Hamilton, from
whom they take their notation: the ring of quaternions is often denoted by
\(\mathbb{H}\), for Hamilton (perhaps because \(\mathbb{Q}\) was
already taken by the rationals).

The quaternions can be seen as an extension of the complex numbers in a similar
sense that the complex numbers can be seen as an extension of the real numbers.
Where complex numbers can be written \(a + bi\), where \(a\) and
\(b\) are real numbers, and \(i\) is the ‘imaginary unit’ satisfying
\(i^2 = -1\), quaternions can be written \(a + bi + cj + dk\), where
\(a, b, c,\) and \(d\) are real numbers, and \(i, j,\) and
\(k\) are each different ‘imaginary units’. Addition is simple enough; as
with complex numbers, we add component-wise:


\[ \begin{align}\begin{aligned}(a + bi + cj + dk) + (e + fi + gj + hk)\\= (a+e) + (b+f)i + (c+g)j + (d+h)k\end{aligned}\end{align} \]

Multiplication is a little more complex, but it follows from the fact that the
imaginary units \(i, j\) and \(k\) satisfy the following equation:


\[i^2 = j^2 = k^2 = ijk = -1\]

The first thing to note is that the multiplicative inverses of \(i, j,\)
and \(k\) are \(-i, -j,\) and \(-k\) respectively.

The above equation does in fact allow us to work out the product of any two
quaternions. For instance, we can work out what the product \(ij\) is by
starting with the equation \(ijk = -1\) and multiplying both sides by
\(-k\) on the right:


\[ \begin{align}\begin{aligned}ijk(-k) = -1(-k)\\ij(-k^2) = k\end{aligned}\end{align} \]

and then using the fact that \(-k^2 = 1\), we obtain \(ij = k\).

You may be wondering why I specified that we were multiplying by \(-k\) ‘on
the right’. For the more common number systems such as the real or complex
numbers, we don’t need to specify, because multiplying on the left is the same
as multiplying on the right, due to both of these number systems being
commutative rings. Because quaternions are not commutative, it does matter in
this case, so we need to specify.

For example, if we now want to work out the product \(ji\), we can use the
fact that \((ji)^{-1} = i^{-1} j^{-1}\). (Look back at Exercise 3.3 if this
is unclear.) Then, we have \((ji)^{-1} = i^{-1} j^{-1} = (-i)(-j) = ij =
k\). Therefore, \(ji = k^{-1} = -k\). In particular, \(ij \neq ji\).

We can derive a complete rule for multiplying quaternions by making use of the
distributive property:


\[ \begin{align}\begin{aligned}&(a + bi + cj + dk) \cdot (e + fi + gj + hk)\\=\; &ae + afi + agj + ahk\\ &+ bei + bf(i^2) + bg(ij) + bh(ik)\\ &+ cej + cf(ji) + cg(j^2) + ch(jk)\\ &+ dek + df(ki) + dg(kj) + dh(k^2)\\=\; &ae - bf - cg - dh\\ &+ (af + be + ch - dg) i\\ &+ (ag - bh + ce + df) j\\ &+ (ah + bg - cf + de) k\end{aligned}\end{align} \]

The non-commutativity of the quaternions make them a little strange to work
with. However, there are subsets of the quaternions which are easier to deal
with.  You all may be relieved to learn that the quaternions for which
\(c\) and \(d\) are both zero behave identically to the complex
numbers, for instance.


Multiplicative inverses

Recall that a division ring is a ring in which all non-zero elements have
multiplicative inverses. We have already seen that the multiplicative inverses
of \(i, j,\) and \(k\) are \(-i, -j,\) and \(-k\) respectively,
but what about all the other quaternions?

We can provide a rule for finding the multiplicative inverse of a quaternion
without too much difficulty, although we will first need a couple of
operations.

Firstly, the norm of a quaternion \(q = a + bi + cj + dk\) is defined as


\[\lVert q \rVert = \sqrt{a^2 + b^2 + c^2 + d^2}\]

(notice that the norm is always a nonnegative real number). Secondly, the
conjugate \(\bar q\) of a quaternion \(q = a + bi + cj + dk\) is
defined as \(\bar q = a - bi - cj - dk\); we simply negate \(b, c,\)
and \(d\).

Then, the multiplicative inverse of a quaternion \(q\) is given by


\[q^{-1} = \frac{\bar q}{\lVert q \rVert^2}\]

You can check this if you really want, but I haven’t set it as an exercise
because it’s a bit tedious. The important thing to remember is that for any
quaternion \(q\), we have that \(qq^{-1} = q^{-1}q = 1\).



Dividing quaternions

The non-commutativity of quaternion multiplication makes defining a division
operation for quaternions a little thorny. With fields, we can define division
as follows:


\[a / b = ab^{-1}\]

But with quaternions, we have two options for the operation of dividing
\(a\) by \(b\): either \(ab^{-1}\) or \(b^{-1}a\); these two
choices will give us different results for most choices of \(a\) and
\(b\).

My understanding is that there is no strong reason to prefer one over the
other, so instead we have to come up with a name for each of them so that
people know which one we are talking about; these names are ‘right division’
and ‘left division’ respectively. (I can never remember which one is
which.)

Both of these operations are defined in the Data.DivisionRing module, which
is part of the Prelude.



Using quaternions for rotations

I won’t go into this in too much detail here, but it turns out that a rotation
of \(\theta\) radians about the axis \((x, y, z)\) in 3D space can be
represented by the quaternion


\[q = \cos \frac{\theta}{2} + \sin \frac{\theta}{2} \big[ xi + yj + zk \big]\]

Now, if we have a point \((a, b, c)\) in 3D space, we can consider it as a
quaternion \(p\) by setting \(p = 0 + ai + bj + ck\).

If we now want to calculate where the point \(p\) ends up after being
rotated about the origin by the rotation represented by \(q\), we
calculate:


\[qpq^{-1}\]

The resulting quaternion will have a zero real part, like \(p\), and we can
read off the \(i, j,\) and \(k\) coefficients to obtain the point in 3D
space where we end up.

We can also compose rotations easily; if we have two rotations represented by
quaternions \(q_1, q_2\), then the rotation given by first performing
\(q_1\) and then performing \(q_2\) is simply \(q_2 q_1\).



Further references

If you want to learn more about quaternions and rotations, the Wikipedia
article Quaternions and spatial rotation [https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation]
might be a good place to start.

I also highly recommend the YouTube video What are quaternions, and how do you visualize them? A story of four dimensions [https://www.youtube.com/watch?v=d4EgbgTm0Bg]
by 3Blue1Brown [https://youtube.com/3Blue1Brown].

There is also my PureScript library purescript-quaternions [https://pursuit.purescript.org/packages/purescript-quaternions],
which provides a Quaternion type, instances, and various operations, as well as
utilities for using quaternions to represent 3D rotations.
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Epilogue

If you’ve read the entire thing and understood at least some of it, well done!
This text is essentially a whirlwind tour through some of the best bits of an
undergraduate maths degree, so going through it in a self-directed manner is
no mean feat.

We’ve now seen all of the type classes included in the PureScript numeric
hierarchy together with motivating examples of each. One of my goals in writing
this guide has been to persuade you that it does make sense to define the
numeric hierarchy as we have in PureScript, since it allows much better code
generality and reuse potential when compared to alternative approaches, such as
putting .add(other) methods on various classes without any type system
support to help us know which properties will be satisfied by objects of a
given class, or worse, reserving the built-in arithmetical operators for
built-in types.

Another benefit of the type class hierarchy approach is that by being based on
mathematical structures which are already very well studied, there is plenty of
information available on them via the web (provided that you have the
background to understand it). This means that it should be easier for us to
determine what the appropriate set of constraints should be for a particular
function.

To give an example, suppose we want to implement the field of fractions [https://en.wikipedia.org/wiki/Field_of_fractions] of
an arbitrary integral domain. The maths tells us that we do in fact need an
integral domain for this to work, so we know that we need to include this as a
constraint somehow. We don’t actually have an integral domain type class in the
PureScript hierarchy, but the closest thing we have which is at least as strong
is EuclideanRing, so we’ll have to use a EuclideanRing a constraint in
our CommutativeRing (Fraction a) and DivisionRing (Fraction a)
instances.

This is just my viewpoint, though. Are you convinced? Have I changed your
mind? Let me know. :)
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Cheatsheet

See also the full-size version [https://harry.garrood.me/numeric-hierarchy-overview/].

[image: ../_images/hierarchy-cheatsheet.png]
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PureScript implementations of objects discussed in this guide

If you’re finding yourself wanting to use some of the mathematical objects
discussed in this guide, look no further. Many of these objects are implemented
in the core libraries, but for some of them, you’ll have to look a little
further afield.

The information here is correct as of Nov 2018, but could easily change; new
libraries could pop up and replace older ones as the best choice in certain
contexts, libraries could become unmaintained, and so on.

The integers, \(\mathbb{Z}\). There are a few options for this:


	The Int type built in to the language. This is not a completely
faithful representation of \(\mathbb{Z}\), because it’s a 32-bit integer
type, which means that it cannot represent integers outside the range
\([-2^{31}, 2^{31}-1]\). In fact, since overflow is handled by wrapping
around, this type is actually equivalent to the integers modulo
\(2^{32}\). While not suitable for representing integers outside this
range, this type has the advantage that interop is the easiest, and also it
will have the best performance.


	A wrapper around a JavaScript bigint library, such as purescript-bigints [https://pursuit.purescript.org/packages/purescript-bigints].


	A native implementation of arbitrarily-sized integers: this has the
advantage of being able to work even if you’re not compiling to JS. See e.g.
purescript-precise [https://pursuit.purescript.org/packages/purescript-precise].




There is also work on adding arbitrarily-sized integers to JavaScript: there is
a Stage 3 TC39 proposal [https://tc39.github.io/proposal-bigint/], and they
have already landed in (at least) Chrome [https://developers.google.com/web/updates/2018/05/bigint].

The real numbers, \(\mathbb{R}\). These are notoriously difficult to
represent in the discrete world of computers, since \(\mathbb{R}\) is such
a monstrously large set that you can’t even pair its elements up with the
elements of \(\mathbb{N}\). You’ll essentially be forced to compromise and
to work with a simpler set…

The rationals, \(\mathbb{Q}\). The rationals are of course infinite,
but unlike the reals, they can in fact be paired up with the natural numbers,
which means you can faithfully represent them on a computer (as long as you
don’t run out of memory). However, it may be prohibitively expensive in time or
memory (or both) to do this.


	The Number type built in to the language, which is a double-precision
IEEE 754 floating point number. This type does of course have a number of
drawbacks, including having counterexamples to pretty much any law or
property which you might expect them to have (e.g. 0.1 + 0.2 does not
quite equal 0.3), and being inhabited by values like NaN and
Infinity which can have surprising behaviour.

However, they also have a number of important advantages. They are
the default option for almost any work requiring an approximation of
\(\mathbb{R}\); their operations are implemented in hardware basically
everywhere, making them significantly faster than any other option; they
have predictable performance and memory usage, which is very unlikely to be
true for any other option; and there is already a significant amount of
literature about how to write algorithms in such a way as to avoid their
pitfalls, as well as freely available implementations of these algorithms
(e.g. on the Math object in JS).



	The Ratio type from purescript-rationals [https://pursuit.purescript.org/packages/purescript-rationals]. When combined with a
big-integer implementation (see above), it gives you a completely faithful
representation of \(\mathbb{Q}\).


	The HugeNum type from purescript-precise [https://pursuit.purescript.org/packages/purescript-precise]. This will be useful in some
of the same contexts as Ratio, although it is implemented in a slightly
different way. Division does not yet appear to be implemented in this
library, however.




The natural numbers, \(\mathbb{N}\). The library purescript-naturals [https://pursuit.purescript.org/packages/purescript-naturals]
provides a type backed by Int, which means that it’s perfect provided that
you don’t need to go above \(2^{31}-1\).

The complex numbers, \(\mathbb{C}\). Since this set is essentially
\(\mathbb{R}^2\), we encounter many of the same issues that we would when
trying to represent \(\mathbb{R}\). As far as I’m aware, there’s only one
option for these in PureScript: the purescript-complex [https://pursuit.purescript.org/packages/purescript-complex] library (although it
doesn’t appear to be compatible with the latest versions of the core libraries
right now).

Matrices. There are number of JS libraries you can wrap for this, such as
glMatrix [http://glmatrix.net], or MathBox [https://gitgud.io/unconed/mathbox]. MathBox in particular has PureScript bindings
already via purescript-mathbox [https://pursuit.purescript.org/packages/purescript-mathbox].

The quaternions, \(\mathbb{H}\). I made a library for these! It’s
purescript-quaternions [https://pursuit.purescript.org/packages/purescript-quaternions].

Modular arithmetic, \(\mathbb{Z}_m\) for some integer \(m\).
I made a library for these too: purescript-modular-arithmetic [https://pursuit.purescript.org/packages/purescript-modular-arithmetic].

Polynomials, \(R[x]\) for some ring \(R\). We’re getting a bit more
exotic now. I would love to hear from you if you have a use case for this
library: purescript-polynomials [https://pursuit.purescript.org/packages/purescript-polynomials].

The symmetric group, \(S_n\). This is also one of mine:
purescript-symmetric-groups [https://pursuit.purescript.org/packages/purescript-symmetric-groups].
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Logic



	Exercise 1.1

	Exercise 1.2

	Exercise 1.3

	Exercise 1.4

	Exercise 1.5

	Exercise 1.6

	Exercise 1.7

	Exercise 1.8

	Exercise 1.9








          

      

      

    

  

  
    

    Exercise 1.1
    

    
 
  

    
      
          
            
  
Exercise 1.1

The statement \(P \land Q\) is false, since it would require both \(P\)
and \(Q\) to be true: in this case, \(Q\) is “pigs can fly”, which is
(thankfully) false.
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Exercise 1.2

The truth table for \(\lor\) looks like this:



	\(P\)

	\(Q\)

	\(P \lor Q\)





	T

	T

	T



	T

	F

	T



	F

	T

	T



	F

	F

	F
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Exercise 1.3

The completed truth table for \(\Leftrightarrow\) looks like this:



	\(P\)

	\(Q\)

	\(P \Leftrightarrow Q\)





	T

	T

	T



	T

	F

	F



	F

	T

	F



	F

	F

	T









          

      

      

    

  

  
    

    Exercise 1.4
    

    
 
  

    
      
          
            
  
Exercise 1.4

Here is a truth table which might help you understand why the first of De
Morgan’s laws is true:



	\(P\)

	\(Q\)

	\(P \land Q\)

	\(\neg (P \land Q)\)

	\(\neg P\)

	\(\neg Q\)

	\(\neg P \lor \neg Q\)





	T

	T

	T

	F

	F

	F

	F



	T

	F

	F

	T

	F

	T

	T



	F

	T

	F

	T

	T

	F

	T



	F

	F

	T

	T

	T

	T

	T






Another truth table can be constructed for the other law in a similar way.
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Exercise 1.5

This exercise doesn’t really have a solution, as it only asks you to persuade
yourself of a fact.
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Exercise 1.6

This exercise doesn’t really have a solution, as it only asks you to persuade
yourself of a fact.
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Exercise 1.7

If we take the contrapositive of the statement


\[x^2 \text{ is odd} \Rightarrow x \text{ is odd}\]

then we should end up with


\[x \text{ is not odd} \Rightarrow x^2 \text{ is not odd}.\]

A more sensible way of saying “\(x\) is not odd” is to say “\(x\) is
even”, so this statement is equivalent to the statement


\[x \text{ is even} \Rightarrow x^2 \text{ is even}.\]

And we’ve already proved that this is true, so we are done!
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Exercise 1.8

If we start with an equation, we are allowed to do the same thing to both
sides, and we will get another equation which also holds.

Subtracting 4 from both sides gives us


\[ \begin{align}\begin{aligned}3x = 13 - 4\\3x = 9\end{aligned}\end{align} \]

Now we can divide both sides by 3:


\[x = 3\]

So we can choose \(x\) to be \(3\) as a suitable value to illustrate
the truth of this statement. In fact \(3\) is the only suitable value in
this case. Note, however, that not all equations have exactly one solution:
some have zero, some have 2 or more, and some have infinitely many.
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Exercise 1.9

One example of an \(x \in \mathbb{R}\) for which \(x < x^2\) is not
true is \(\frac{1}{2}\); squaring \(\frac{1}{2}\) gives you
\(\frac{1}{4}\).

In fact, for any \(x\) satisfying \(0 \leq x \leq 1\), we will have
that \(x \geq x^2\); this is perhaps best illustrated by plotting \(y
= x\) and \(y = x^2\) on a graph:

[image: ../../../_images/x-vs-x2.png]
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Exercise 2.1

The natural numbers together with subtraction \((\mathbb{N}, -)\) is not a
monoid; it fails to satisfy any of the three monoid laws!

It doesn’t satisfy closure because if you subtract a larger number from a
smaller number, you get a negative number (recall that there are no negative
numbers in \(\mathbb{N}\)).

It doesn’t satisfy associativity. For example:


\[\begin{split}(3 - 0) - 2 &= 3 - 2 \\
            &= 1\end{split}\]

But:


\[\begin{split}3 - (0 - 2) &= 3 - (-2) \\
            &= 5\end{split}\]

It fails to satisfy identity as well. To see this, we will first note that
there is only one right identity in this set; that is, there is only one
\(e \in \mathbb{N}\) which makes the following equation hold for all
\(x \in \mathbb{N}\):


\[x - e = x\]

It’s not too difficult to see that this \(e\) is \(0\). So \(0\) is
the only possible candidate to be the identity element thus far. But remember
that we need it to work the other way around too: to be the identity element,
we need it to be a left identity too; that is, it needs to satisfy the
following for all \(x \in \mathbb{N}\):


\[e - x = x\]

But if we set \(e\) to be \(0\), this won’t work, so \(0\) is not a
left identity. In fact no element of \(\mathbb{N}\) is a left identity
under subtraction.
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Exercise 2.2

We first check the closure law for \((\mathbb{Q}, +)\). Suppose we have two
arbitrary elements of \(\mathbb{Q}\); we can write them as
\(\frac{a}{b}\) and \(\frac{c}{d}\), where \(a, b, c, d \in
\mathbb{Z}\).

Then:


\[\begin{split}\frac{a}{b} + \frac{c}{d} &= \frac{ad}{bd} + \frac{bc}{bd} \\
                          &= \frac{ad + bc}{bd}.\end{split}\]

We have an integer on the top and an integer on the bottom, so the result of
adding these two values is in \(\mathbb{Q}\), and therefore the closure
law is satisfied.

We could check associativity similarly to how we checked closure, but we
already know that addition is associative for all real numbers; since the
rational numbers are a subset of the real numbers, we can simply conclude that
the associativity law holds for \((\mathbb{Q}, +)\).

The identity element in \((\mathbb{Q}, +)\) is 0, just like in
\((\mathbb{Z}, +)\) and in \((\mathbb{R}, +)\).
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Exercise 2.3

Let \((M, *)\) be a monoid, and let \(e, e' \in M\). Assume that
\(e\) and \(e'\) are both identity elements; that is,


\[ \begin{align}\begin{aligned}\forall x \in M.\; e * x = x * e = x\\\forall x \in M.\; e' * x = x * e' = x.\end{aligned}\end{align} \]

Now what is the result of \(e * e'\)? Since \(e\) is an identity, we
must have that \(e * e' = e'\). Additionally, since \(e'\) is an
identity, we must have that \(e * e' = e\). The only way that \(e *
e'\) can be equal to both of these two things at once is if they are the same,
so we conclude that \(e = e'\), i.e. any monoid has exactly one identity
element.
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Exercise 2.4

We check each monoid law in turn:

Closure. If we have two functions \(f, g \in \mathrm{Maps}(X, M)\), then
their star product is itself a function from \(X\) to \(M\), i.e.
\(f \star g \in \mathrm{Maps}(X, M)\). So closure is satisfied.

Associativity. Let \(f, g, h \in \mathrm{Maps}(X, M)\). Then:


\[\begin{split}(f \star g) \star h
  &= (x \mapsto f(x) * g(x)) \star h \\
  &= x \mapsto (f(x) * g(x)) * h(x) \\
  &= x \mapsto f(x) * (g(x) * h(x)) \\
  &= f \star (x \mapsto g(x) * h(x)) \\
  &= f \star (g \star h)\end{split}\]

This gets a little bit messy, but the key observation is that associativity
of the star product follows from associativity of the underlying monoid
\((M, *)\). So associativity is satisfied.

Identity. Let \(\iota : X \rightarrow M\) be defined by \(\iota(x) =
e_M\), where \(e_M\) denotes the identity element in \(M\). Then, for
any \(f \in \mathrm{Maps}(X, M)\), we have that:


\[ \begin{align}\begin{aligned}f \star \iota = x \mapsto f(x) * e_M = x \mapsto f(x) = f\\\iota \star f = x \mapsto e_M * f(x) = x \mapsto f(x) = f\end{aligned}\end{align} \]

That is, \(\iota\) is the identity element of \((\mathrm{Maps}(X, M),
\star)\). So identity is satisifed, and this completes the proof.
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Exercise 3.1

If we take the monoid of the set of truth-values \(\{T, F\}\) together with
\(\land\), we can write


\[F \land x = T\]

which is unsatisfiable; the equation does not hold for either of the two
possible values of \(x \in \{T, F\}\).

Another example is the monoid of strings, i.e. the Monoid String instance
in PureScript. The following equation is unsatisfiable, for any possible x ::
String value:

"abc" <> x = "def"





One final example is the monoid \((\mathbb{N}, \max)\), where
\(\max(x, y)\) is defined to be the larger of \(x\) and \(y\). Then
this equation is unsatisfiable:


\[\max(5, x) = 4\]

If \(x \leq 5\), then \(\max(5, x) = 5\). If \(x > 5\), then
\(\max(5, x) = x\). Either way, the result can never be \(4\).
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Exercise 3.2

Let \((G, *)\) be a group. We are looking for an \(e^{-1} \in G\) such
that \(e * e^{-1} = e^{-1} * e = e\) (remember that inverses are unique, so
there must be exactly one such \(e^{-1}\)).

By the monoid identity law (remember all groups are monoids), we have that
\(e * e = e\), so the inverse of the identity must be the identity itself.
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Exercise 3.3

Let \(G\) be a group, and let \(g, h \in G\). We’re going to try
multiplying \(g^{-1} h^{-1}\) and \(hg\) and seeing what happens:


\[ \begin{align}\begin{aligned}&g^{-1} h^{-1} hg\\&= g^{-1} (h^{-1}h) g\\&= g^{-1} e g\\&= g^{-1} g\\&= e.\end{aligned}\end{align} \]

Since inverses are unique, we know that \(hg\) must be the unique inverse
of \(g^{-1} h^{-1}\). That is, \(g^{-1} h^{-1} = (hg)^{-1}\).
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Exercise 3.4


Part a)

Essentially, we are looking for an integer that solves \(3 + x = 2\), which
is clearly \(x = -1\). So the answer is \(\overline{-1}\). However, it
is customary to use a number between \(0\) and \(m - 1\) as the
representative for an element of \(\mathbb{Z}_m\). Remember that
\(\overline{x} = \overline{x + 12}\), so in particular \(\overline{-1}
= \overline{11}\). So we write the answer as \(\overline{11}\).



Part b)

The procedure is similar to part a); we are looking for an integer that solves
\(5 + x = 0\), which is clearly \(x = -5\), giving us the answer
\(\overline{-5} = \overline{7}\).
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Exercise 3.5

Let \(X = \{ 1, 2, ... , n \}\), and let \(f : X \to X\) be bijective.
We wish to determine how many possibilities there are for \(f\). To
determine a particular choice of \(f\), we need to say what it does to each
element of \(X\):


\[ \begin{align}\begin{aligned}f(1) = \, ???\\f(2) = \, ???\\...\\f(n) = \, ???\end{aligned}\end{align} \]

We have \(n\) choices to make: on the right-hand side of each of the above
\(n\) equations, we need to choose an element of \(X\). However,
remember that the function we end up with needs to be bijective. That means
that each element of \(X\) needs to appear on the right-hand side of
exactly one of these equations.

Suppose we decide to make a choice for \(f(1)\) first. We may choose any
element of \(X\), so we have \(n\) options.

Now, we decide to make a choice for \(f(2)\). We may choose any element of
\(X\) other than the element we chose for \(f(1)\), which means we have
\(n-1\) choices.

For \(f(3)\), we may choose any element of \(X\) other than the
elements we chose for \(f(1)\) and \(f(2)\), which means we have
\(n-3\) choices.

We continue this process until we reach the end of our list of equations, at
\(f(n)\). At this point there will only be one element of \(X\)
remaining which we haven’t yet picked, so we have no freedom at all here: we
have to choose that element for \(f(n)\).

In a process which involves making a sequence of choices, the total number of
end possibilities is equal to the product of the number of possibilities for
each choice. Therefore, the number of possibilities for an arbitrary
permutation \(f\) of \(X\) is


\[n \times (n-1) \times (n-2) \; \times \; ... \; \times \; 2 \times 1 = n!\]
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Exercise 4.1

This follows from the previous theorem we proved, that \((-x)y = -(xy)\):


\[\begin{split}(-x)(-y) &= -(x(-y)) \\
         &= -(-(xy)) \\
         &= xy\end{split}\]

In the first and second steps, we are just applying the previous theorem. In
the final step, we are using a property of groups, which is that the inverse of
the inverse of some element is just that element. In other words, if you invert
an element twice, you end up with what you started with.
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Exercise 5.1

We need to prove the associativity law for \((\mathbb{R}^2, +)\); that is,
we need to show that \(\forall \boldsymbol{x}, \boldsymbol{y},
\boldsymbol{z} \in \mathbb{R}^2.\; (\boldsymbol{x} + \boldsymbol{y}) +
\boldsymbol{z} = \boldsymbol{x} + (\boldsymbol{y} + \boldsymbol{z})\).

This result follows naturally from associativity of addition in
\(\mathbb{R}\):


\[\begin{split}(
  \begin{bmatrix}x_1\\x_2\end{bmatrix} +
  \begin{bmatrix}y_1\\y_2\end{bmatrix}
) +
\begin{bmatrix}z_1\\z_2\end{bmatrix}
&=
\begin{bmatrix}x_1 + y_1\\x_1 + y_2\end{bmatrix} +
\begin{bmatrix}z_1\\z_2\end{bmatrix}
\\ &=
\begin{bmatrix}x_1 + y_1 + z_1\\x_1 + y_2 + z_2\end{bmatrix}
\\ &=
\begin{bmatrix}x_1\\x_2\end{bmatrix} +
\begin{bmatrix}y_1 + z_1\\y_1 + z_2\end{bmatrix}
\\ &=
\begin{bmatrix}x_1\\x_2\end{bmatrix} +
(
  \begin{bmatrix}y_1\\y_2\end{bmatrix} +
  \begin{bmatrix}z_1\\z_2\end{bmatrix}
)\end{split}\]
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Exercise 5.2

We need to come up with a recipe for finding the inverse of a vector in
\((\mathbb{R}^2, +)\): that is, given a vector, find another vector such that
the sum of these two vectors is the the zero vector.

Suppose we have an \(\boldsymbol{x} \in \mathbb{R}^2\), so
\(\boldsymbol{x} = (x_1, x_2)\). If we add it to some other vector
\(\boldsymbol{y} = (y_1, y_2)\), we get \((x_1 + y_1, x_2 + y_2)\).
For this sum to be equal to the zero vector we have to choose \(y_1, y_2\)
so that the following two equations are satisfied:


\[ \begin{align}\begin{aligned}x_1 + y_1 = 0\\x_2 + y_2 = 0\end{aligned}\end{align} \]

The solution is therefore


\[ \begin{align}\begin{aligned}y_1 = -x_1\\y_2 = -x_2\end{aligned}\end{align} \]

or simply \(\boldsymbol{y} = -\boldsymbol{x}\). That is, you can invert a
vector in \((\mathbb{R}^2, +)\) by performing a scalar multiplication by
\(-1\).
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Exercise 5.3

Let \(\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^2, k \in \mathbb{R}\).
We will write \(x_1\) for the first component of \(\boldsymbol{x}\),
\(x_2\) for the second component of \(\boldsymbol{x}\), and so on.

Then:


\[\begin{split}k (\boldsymbol{x} + \boldsymbol{y})
  &= k (\begin{bmatrix}x_1\\x_2\end{bmatrix} + \begin{bmatrix}y_1\\y_2\end{bmatrix}) \\
  &= k (\begin{bmatrix}x_1 + y_1\\x_2 + y_2\end{bmatrix}) \\
  &= \begin{bmatrix}k(x_1 + y_1)\\k(x_2 + y_2)\end{bmatrix} \\
  &= \begin{bmatrix}kx_1 + ky_1\\kx_2 + ky_2\end{bmatrix} \\
  &= \begin{bmatrix}kx_1\\kx_2\end{bmatrix} + \begin{bmatrix}ky_1\\ky_2\end{bmatrix} \\
  &= k \begin{bmatrix}x_1\\x_2\end{bmatrix} + k \begin{bmatrix}y_1\\y_2\end{bmatrix} \\
  &= k\boldsymbol{x} + k\boldsymbol{y}\end{split}\]
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Exercise 5.4

As in exercise 5.3, we will write the \(i\)-th component of a vector
\(\boldsymbol{x}\) as \(x_i\).

For the first identity:


\[\begin{split}\boldsymbol{x} \cdot (\boldsymbol{y} + \boldsymbol{z})
  &= \begin{bmatrix}x_1\\x_2\end{bmatrix} \cdot (\begin{bmatrix}y_1\\y_2\end{bmatrix} + \begin{bmatrix}z_1\\z_2\end{bmatrix}) \\
  &= \begin{bmatrix}x_1\\x_2\end{bmatrix} \cdot \begin{bmatrix}y_1+z_1\\y_2+z_2\end{bmatrix} \\
  &= x_1(y_1 + z_1) + x_2(y_2 + z_2) \\
  &= x_1y_1 + x_1z_1 + x_2y_2 + x_2z_2 \\
  &= (x_1y_1 + x_2y_2) + (x_1z_1 + x_2z_2) \\
  &= (\begin{bmatrix}x_1\\x_2\end{bmatrix} \cdot \begin{bmatrix}y_1\\y_2\end{bmatrix}) +
     (\begin{bmatrix}x_1\\x_2\end{bmatrix} \cdot \begin{bmatrix}z_1\\z_2\end{bmatrix}) \\
  &= \boldsymbol{x} \cdot \boldsymbol{y} + \boldsymbol{x} \cdot \boldsymbol{z}\end{split}\]

For the second:


\[\begin{split}(k_1 \boldsymbol{x}) \cdot (k_2 \boldsymbol{y})
  &= \begin{bmatrix}k_1x_1\\k_1x_2\end{bmatrix} \cdot \begin{bmatrix}k_2y_1\\k_2y_2\end{bmatrix} \\
  &= (k_1x_1)(k_2y_1) + (k_1x_2)(k_2y_2) \\
  &= k_1 k_2 (x_1y_1 + x_2y_2) \\
  &= k_1 k_2 (\boldsymbol{x} \cdot \boldsymbol{y})\end{split}\]
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Exercise 5.5

Let \(\boldsymbol{a}_1, \boldsymbol{a}_2 \in \mathbb{R}^2\), and define


\[\begin{split}f = \boldsymbol{x} \mapsto
    \begin{bmatrix}\boldsymbol{a_1} \cdot \boldsymbol{x} \\
                   \boldsymbol{a_2} \cdot \boldsymbol{x} \end{bmatrix}\end{split}\]

Then,


\[\begin{split}f(\boldsymbol{x} + \boldsymbol{y})
  &= \begin{bmatrix}
       \boldsymbol{a_1} \cdot (\boldsymbol{x} + \boldsymbol{y}) \\
       \boldsymbol{a_2} \cdot (\boldsymbol{x} + \boldsymbol{y})
     \end{bmatrix} \\
  &= \begin{bmatrix}
       \boldsymbol{a_1} \cdot \boldsymbol{x} + \boldsymbol{a_1} \cdot \boldsymbol{y} \\
       \boldsymbol{a_2} \cdot \boldsymbol{x} + \boldsymbol{a_2} \cdot \boldsymbol{y} \\
     \end{bmatrix} \\
  &= \begin{bmatrix}
       \boldsymbol{a_1} \cdot \boldsymbol{x} \\
       \boldsymbol{a_2} \cdot \boldsymbol{x}
     \end{bmatrix} +
     \begin{bmatrix}
       \boldsymbol{a_1} \cdot \boldsymbol{y} \\
       \boldsymbol{a_2} \cdot \boldsymbol{y}
     \end{bmatrix} \\
  &= f(\boldsymbol{x}) + f(\boldsymbol{y})\end{split}\]

The important thing to note about this proof is that we are using the property
which we previously proved about the dot product, that \(\boldsymbol{x}
\cdot (\boldsymbol{y} + \boldsymbol{z}) = \boldsymbol{x} \cdot \boldsymbol{y} +
\boldsymbol{x} \cdot \boldsymbol{z}\).

Similarly,


\[\begin{split}f(k \boldsymbol{x})
  &= \begin{bmatrix}
       \boldsymbol{a_1} \cdot (k\boldsymbol{x}) \\
       \boldsymbol{a_2} \cdot (k\boldsymbol{x})
     \end{bmatrix} \\
  &= \begin{bmatrix}
       k (\boldsymbol{a_1} \cdot \boldsymbol{x}) \\
       k (\boldsymbol{a_2} \cdot \boldsymbol{x})
     \end{bmatrix} \\
  &= k \begin{bmatrix}
       \boldsymbol{a_1} \cdot \boldsymbol{x} \\
       \boldsymbol{a_2} \cdot \boldsymbol{x}
     \end{bmatrix} \\
  &= k f(\boldsymbol{x})\end{split}\]

This argument similarly uses the other property of the dot product which we
proved a moment ago, namely that \((k_1 \boldsymbol{x}) \cdot (k_2
\boldsymbol{y}) = k_1 k_2 (\boldsymbol{x} \cdot \boldsymbol{y})\).

We have proved that the two linear mapping laws hold for any such function
\(f\), and therefore we are done: any function defined in terms of dot
products like this is a linear mapping.
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Exercise 5.6

Let \(f, g\) be linear mappings. We consider the function \(f \circ
g\), defined as


\[f \circ g = \boldsymbol{x} \mapsto f(g(\boldsymbol{x}).\]

Firstly, we know that


\[f(g(\boldsymbol{x} + \boldsymbol{y})) = f(g(\boldsymbol{x}) + g(\boldsymbol{y}))\]

since \(g\) is a linear mapping by assumption. Now we use the fact that
\(f\) is a linear mapping to conclude that


\[f(g(\boldsymbol{x}) + g(\boldsymbol{y})) = f(g(\boldsymbol{x})) + f(g(\boldsymbol{y})).\]

We have therefore shown that \((f \circ g)(\boldsymbol{x} +
\boldsymbol{y}) = (f \circ g)(\boldsymbol{x}) + (f \circ g)(\boldsymbol{y})\)
and so we have established the first linear mapping law.

The second part of the proof is very similar: we show that \(f \circ g\) is
compatible with scalar multiplication by first using the fact that \(g\) is
compatible with scalar multiplication and then by using the fact that \(f\)
is.
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Integral domains
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Exercise 6.1

There are two possible options for \(b\) such that \(\overline{3}
\cdot b = 0\). They are \(\overline{4}\) and \(\overline{8}\); notice
that


\[\overline{3} \cdot \overline{4} = \overline{3 \times 4} = \overline{12} = \overline{0}\]

and also that


\[\overline{3} \cdot \overline{8} = \overline{3 \times 8} = \overline{24} = \overline{0}.\]
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Exercise 6.2

Let \(R\) be a ring, and suppose \(1\) is a zero-divisor. That is,
there exists a \(b \in R\) with \(b \neq 0\) such that \(1 \cdot b
= 0\) or \(b \cdot 1 = 0\). But \(1 \cdot b = b \cdot 1 = b\) since
\(1\) is the multiplicative identity. So \(b = 0\), but this is a
contradiction. Therefore \(1\) cannot be a zero-divisor.
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Exercise 6.3

The ring \(\mathbb{Z}_8\) is commutative, so our only option to show that
it is not an integral domain is to show that it has a zero-divisor. There are
in fact three zero-divisors in \(\mathbb{Z}_8\): they are
\(\overline{2}, \overline{4},\) and \(\overline{6}\). Each of these
yields \(\overline{0}\) when multiplied by \(\overline{4}\).
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Exercise 6.4

Suppose \(m \geq 2\) and \(\mathbb{Z}_m\) has a zero-divisor. That is,
there exist integers \(a, b\) such that \(\overline{a} \neq
\overline{0}, \overline{b} \neq \overline{0},\) and \(\overline{ab} =
\overline{0},\) or equivalently, neither \(a\) nor \(b\) is a multiple
of \(m\), but \(ab\) is. The only way this can happen is if \(m\)
is composite i.e. not prime, as in this case there must exist integers \(1
< k, l < m\) with \(kl = m\) such that \(k\) divides \(a\) and
\(l\) divides \(b\).

Conversely, suppose \(m \geq 2\) and \(\mathbb{Z}_m\) is an integral
domain, i.e. it has no zero-divisors. That is, for any integers \(a, b\)
with \(1 < a, b < m,\) we have that \(ab\) is not a multiple of
\(m\). The only way this can happen is if \(m\) is prime.

Therefore, \(\mathbb{Z}_m\) is an integral domain if and only if \(m\)
is prime.
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The Euclidean Algorithm
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Exercise 9.1

We want to find the greatest common divisor of \(a = 1938\) and \(b =
782\). We start by dividing \(1938\) by \(782\):


\[1938 = 2 * 782 + 374\]

And now we divide \(798\) by the remainder, \(374\):


\[782 = 2 * 374 + 34\]

Then we divide \(374\) by our new remainder, \(34\):


\[374 = 11 * 34\]

This time, it goes exactly. So the greatest common divisor is \(34\).
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Exercise 11.1

Let \(a, b \in \mathbb{Z}\), with both nonzero. We want to show that
\(\lvert a \rvert \leq \lvert ab \rvert\).

There are a few ways to do this. For the way I’m going to use here, our first
step is to show that \(\lvert ab \rvert = \lvert a \rvert \lvert b
\rvert\) for any integers \(a, b.\) In fact, this always holds, even if
\(a\) or \(b\) is zero. This can be proved by cases. We’ll consider
four cases:


	\(a \geq 0, \; b \geq 0\)


	\(a \geq 0, \; b < 0\)


	\(a < 0,    \; b \geq 0\)


	\(a < 0,    \; b < 0\)




In the first case, since both \(a\) and \(b\) are nonnegative, we have
that \(\lvert a \rvert = a\) and \(\lvert b \rvert = b\), so it follows
that \(\lvert a \rvert \lvert b \rvert\) is equal to \(ab\).  Also,
since \(a\) and \(b\) are both nonnegative, their product \(ab\) is
also nonnegative, so \(\lvert ab \rvert = ab\) and we are done.

In the second case, we have that \(\lvert a \rvert = a\) as before, but
\(\lvert b \rvert = -b\), since \(b\) is negative, and so the right
hand side is equal to \(-ab\). Also, in this case, the product \(ab
\leq 0\), so on the left hand side, we have \(\lvert ab \rvert = -ab\). So
both sides are equal to \(-ab\) and we are done.

The remaining two cases play out similarly, so I won’t bother to write them
out.

Now we know that \(\lvert ab \rvert = \lvert a \rvert \lvert b \rvert\), we
can return to our original question. Using our new knowledge, we can rewrite
the statement we are trying to prove as \(\lvert a \rvert \leq \lvert a
\rvert \lvert b \rvert\). One thing we can do with inequalities is divide both
sides by a positive number. Since we have by assumption that \(a\) is
nonzero, it follows that \(\lvert a \rvert > 0\) and so we can divide both
sides by \(\lvert a \rvert\), leaving us with \(1 \leq \lvert b
\rvert\). And since \(b\) is a nonzero integer, \(\lvert b \rvert\) must
be a positive integer, so \(1 \leq \lvert b \rvert\) is necessarily true,
and we are done.
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Exercise 11.2

Let \(F\) be a field and let \(a, b \in F[x]\), with both nonzero. We
want to show that \(\deg(a) \leq \deg(ab)\).

Consider two nonzero polynomials \(a, b\) and think about their product
\(ab\).  We already know that the leading term of \(ab\) comes from the
product of the leading terms of \(a\) and \(b\), whose powers of
\(x\) will be \(\deg(a)\) and \(\deg(b)\) respectively. So the
power of \(x\) in the leading term of \(ab\) is \(\deg(a) +
\deg(b)\), i.e.  \(\deg(ab) = \deg(a) + \deg(b)\).

So our original inequality is equivalent to \(\deg(a) \leq \deg(a) +
\deg(b)\) or equivalently, \(0 \leq \deg(b)\). But we know this to be true
already: the degree of a nonzero polynomial is always nonnegative! So we are
done.
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